
Capsule Networks
Beyond Convolutional Neural Networks

Presentation by Matteo Tiezzi

A work by Geoffrey Hinton

Presentation based on the following papers:

• Transforming auto-encoders , Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. In
International Conference on Artificial Neural Networks, pages 44–51. Springer, 2011.

• Dynamic Routing Between Capsules, Sara Sabour, Nicholas Frosst, Geoffrey E Hinton, Nov
2017

• (Matrix capsules with EM routing, Anonymous authors, Paper under double-blind review)

An evolving theory

https://arxiv.org/find/cs/1/au:+Sabour_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Frosst_N/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Hinton_G/0/1/0/all/0/1

Convolutional Neural Networks

Stack of layers with Convolution, Subsampling and Nonlinearity Operations

 CNN use multiple layers of learned feature detectors (Kernels running spatially all
over the image)

 Features detectors are local, and each type is replicated across space
 Spatial domains get bigger in higher layers

x Feature extractions layers are interleaved with subsampling layers that pool the
outputs of nearby features detector of the same type

The motivations for pooling
• Reduces the number of inputs to the next layer of feature extractions (reduces the size of

activation maps)
 Allowing to have more types of feature and bigger domains, besides the computational cost

reduction

• Gives a small amount of translational invariance at each level
 Motivated by the fact that the final label needs to be

viewpoint-invariant
 Precise location of the most active feature is thrown away

If an entity in the image is translated by a small amount, the activation
map corresponding to that entity will shift equally. But, the max-pooled
output of the activation map remains unaltered.

Without pooling CNNs would fit only for images or data which are very close to the training set.

Internal data representation of a convolutional neural network does not take into account
important spatial hierarchies between simple and complex objects.

Sub-sampling loses the precise spatial relationships between higher-level parts such as a nose and a
mouth. The precise spatial relationships are needed for identity recognition

Overlapping the sub-sampling pools mitigates this.

The following pictures may fool a simple CNN model in believing that this a good sketch of boat, human
face, etc.

They cannot extrapolate their understanding of
geometric relationships to radically new viewpoints

Sub-sampling tries to make the neural activities invariant to small changes in viewpoint.

• This is the wrong goal, motivated by the fact that the final label needs to be viewpoint-invariant.

• Its better to aim for equivariance: we want that changes in viewpoint lead to corresponding changes
in neural activities.

• In the perceptual system, its the weights that code viewpoint-invariant knowledge, not the neural
activities.

Invariance vs Equivariance
In general it is said that:
• an Operator is invariant with respect to a Transformation when the effect of the Transformation

is not detectable in the Operator Output

• an Operator is equivariant with respect to a Transformation when the effect of the
Transformation is detectable in the Operator Output

Without pooling, CNN
give «place-coded»
equivariance for discrete
traslation

Extrapolating shape recognition to very different
viewpoint

• To deal with invariance, current NNs train on different viewpoints

• This requires a lot of training data

Better approach:

• The manifold of images of the same shape is highly non-linear in the space of pixel
intensities

• If we transform it to a space in which the manifold is globally linear, this allows massive
extrapolation

There is a linear manifold (the one which Computer graphics uses). If we get from
pixels to coordinate representation of pieces of objects, obtaining their poses, than
everithing is linear in that.

Obtaining equivariance: Inverse computer graphics

Computer vision as inverse computer graphics.

So the higher levels of a vision system should look like the representations used in graphics.

Graphics programs use hierarchical models in which spatial structure is modeled by matrices
(of weights), that represent the relationship between the object as a whole and the pose of
the part.

• These matrices are totally viewpoint invariant.

• However much the pose of the part has changed we can get back the pose of the whole
using the same matrix of weights.

To go from a mesh object onto pixels on a screen, it

takes the pose of the whole object, and multiplies it

by a transformation matrix. This outputs the pose of

the object’s part in a lower dimension (2D), which is

what we see on our screens.

This gives complete independence

(and translational invariance) between

the viewpoints of the object in a matrix

of weights, not in the neural activity

(equivariance).

Advantages and way to proceed
• It becomes very easy for a model to understand that the thing that it sees is just another view of

something that it has seen before.

• In this way it is possible to learn by only using a fraction of the data that a CNN would use.

A higher level visual entity is present if several
lower level visual entities can agree on their
predictions for its pose.

(Shape recognition in computer vision of ’80)

Two layers in a hierarchy of parts

Coincidence filtering using the linear manifold

Th : pose of the nose
ph: probability that the nose is present
Thj , … : viewpoint invariant

Exactly what Capsules do.

Capsule

• Group of neurons that perform a lot of internal computation and then encapsulate the results of
these computations into a small vector of highly informative outputs. Inspired by mini-column in
brain.

• Each capsule learns to recognize an implicitly defined visual entity over a limited domain of
viewing conditions and deformations

• It outputs two things (embedded in the vector):

1. the probability that the entity is present within its limited domain

2. a set of “instantiation parameters”, the generalized pose of the object. That may include the
precise position, lighting and deformation of the visual entity relative to an implicitly defined
canonical version of that entity

From Transforming Autoencoders:
Instead of aiming for viewpoint invariance in the activities of “neurons” that use a single scalar output to
summarize the activities of a local pool of replicated feature detectors, artificial neural networks should use
local “capsules”

In the last paper (Dynamic Routing Between Capsules), Capsules encode
probability of detection of a feature as the length of their output vector.

Capsule

Capsule equivariance
• Capsules encode probability of detection of a feature as the length of their output vector.

And the state of the detected feature is encoded as the direction in which that vector
points to (“instantiation parameters”).

• So when detected feature moves around the image or its state somehow changes, the
probability still stays the same (length of vector does not change), but its orientation
changes.

• This is what Hinton refers to as activities equivariance: neuronal activities will change
when an object “moves over the manifold of possible appearances” in the picture. At the
same time, the probabilities of detection remain constant, which is the form of invariance
that we should aim at, and not the type offered by CNNs with max pooling.

How does a capsule work?

They are organized in layers.

Let u1, u2, u3 be the output vectors coming from capsules of the
layer below. The vector is sent to all possible parents in the neural
network.

Let us assume that lower level
capsules detect eyes, mouth and nose
respectively and out capsule detects
face.

• These vectors then are multiplied by corresponding weight matrices W (learned during training) that
encode important spatial and other relationships between lower level features (eyes, mouth and nose)
and higher level feature (face). W performs an affine transformation

• We get the predicted position of the higher level feature,
i.e. where the face should be according to the detected position of the eyes

Next intuition: if these 3 predictions of lower level features point at the same position and

state of the face, then it must be a face there.

How does a capsule work?

Then we compute a weighted sum sj with weights cij , coupling coefficient trained by
dynamic routing (discussed next)

We apply a squashing function (a non-linear activation function) to scale the vector between 0 and unit
length (its length represent a probability, as already stated). This do not change the vector direction (its
pose).

It shrinks small vectors to zero and long vectors to unit vectors. Therefore the likelihood of each
capsule is bounded between zero and one.

Summary

Routing by Agreement
• According to Hinton, when a visual stimulus is triggered, the brain has an inbuilt mechanism

to “route” low level visual data to parts of the brain where it believes can handle it best.

• ConvNets perform routing via pooling layers, a very primitive way to do routing as it only attends to
the most active neuron in the pool.

Capsule Networks is different as it
tries to send the information to
the capsule above it that is best at
dealing with it.

The parameters Wij models a
“part-whole” relationship
between the lower and higher
level entities

Iterative dynamic Routing Algorithm

High-dimensional coincidence
in multi-dim pose space

• A capsule receives multi-dim
prediction vectors from caps in the
layer below

• It looks for tight cluster of predictions
• It otputs:

• High probability that an entity of
this type exists in its domain

• The center of gravity of the
cluster, which is the generalized
pose of that entity

Lower level capsule will send its input to the higher level capsule that
“agrees” with its input. This is the essence of the dynamic routing
algorithm.

REINFORCE CONNECTION
WITH

CAPSULE
HAVING

THE CLOSEST CENTROID

Iterative dynamic Routing Algorithm
• Intuitively, prediction vector is the prediction (vote) from the capsule i on the output of the capsule j above.

• If the activity vector vj has close similarity with the prediction vector, we conclude that capsule i is highly
related with the capsule j. (For example, the eye capsule is highly related to the face capsule.)

• Similarity measured with the “agreement” quantity aij=⟨ , vj ⟩.

• Judging by the values of aij we can then “strengthen” or “weaken” the corresponding connection strength
by highering or lowering cij appropriately.

By “fading away” the incoming connections that don’t agree, we enforce the connection
parameters Wij to learn more prominent “part-whole” relationships, behaving like a parse-tree.
Each active capsule will choose a caps in the layer above to be its parent in the tree.

bij for each training example. 3 Routing iterations seems the best choice

• The “capsules” that implement the lowest-level parts in the hierarchy need to extract explicit pose
parameters from pixel intensities

• These capsules are quite easy to learn from pairs of transformed images if the neural net has direct,
nonvisual access to the transformations

• In humans, for example, a saccade causes a pure translation of the retinal image and the cortex has non-
visual access to information about eye-movements.

• We explain the idea using simple 2-D images and capsules whose only pose outputs are an x and a y
position

Learning the first level of capsules:
Transforming Autoencoders (2011)

• Once it has been learned, the net takes as inputs an image and
desired shifts, ∆x and ∆y, and it outputs the shifted image

• Each capsule has its own logistic “recognition units” that act as a
hidden layer for computing three numbers, x, y, and p

• “Generation units”, the capsule’s contribution to the
transformed image. Inputs are x + ∆x and y + ∆y, and the
contributions from the capsule’s generation units to the
output image are multiplied by p, so inactive capsules have
no effect

CapsNet (2017) for MNIST
• CNNs use translated replicas of learned feature detectors. This allows them to translate

knowledge about good weight values acquired at one position in an image to other positions

• CapsNet replace the scalar-output feature detectors of CNNs with vector-output capsules
and max-pooling with routing-by-agreement, we would still like to replicate learned
knowledge across space

• All but the last layer composed by convolutional capsules

1. First convolutional layer: This is an usual convolutional layer,
image 28 x 28 convolved by 256 kernels of shape 9 x 9.

Output of this layer is 256 feature maps/activation maps
of shape 20 x 20

CapsNet (2017) for MNIST
2. Second convolutional layer or the PrimaryCaps layer:

1. another convolutional layer which produces 256
activation maps of 6 x 6

2. Output of the second convolutional layer (6 x 6 x 256) interpreted as a set of 32 “capsule
activation maps” with capsule dimension 8.

A total of 6*6*32 = 1152 capsules (each of dimension 8)

a total of 1152*10 = 11520 weight matrices WijWij

3. Capsule-to-capsule layer or DigitCaps layers:

• The 1152 (lower level) capsules are connected to 10 (higher levels)

• capsules (a total of 1152*10 = 11520 weight matrices Wij)

• The 10 higher level capsules (of dimension 16) represent the 10 final

“digit/class entities”

• This layer also has the “dynamic routing” in it.

CapsNet (2017) for MNIST

The loss function

Capsules use a separate margin loss Lc for each category c of digit capsules:

Tc=1 if an object of class c is present. m+=0.9 and m−=0.1., λ=0.5 down-weighting for absent
digit classes

Translated to english : if an object of class c is present, then ||vc|| should be no less than 0,9. If not
then ||vc|| should be no more than 0,1

Total loss is the sum of losses of all digit capsules

Reconstruction as a regularization method

• Capsule Networks use a reconstruction loss as a regularization method to encourage the digit
capsules to encode the instantiation parameters of the input digit

• In order to reconstruct the input from a lower dimensional space, the Encoder and Decoder needs
to learn a good matrix representation to relate the relationship between the latent space and the
input

During training, we mask out all but the activity vector of the correct digit capsule. Then we use this
activity vector to reconstruct the input image.

To summarize:

• using the reconstruction loss as a regularizer, the Capsule Network is able to learn a global
linear manifold between a whole object and the pose of the object and its parts as a matrix
of weights via unsupervised learning.

• the translation invariance is encapsulated in the matrix of weights, and not during neural
activity, making the neural network translation equivariance.

Reconstruction as a regularization method

Experimental Results

The model achieves state-of-the-
art performance on MNIST and is
considerably better than a
convolutional net at recognizing
highly overlapping digits

MATRIX CAPSULES WITH EM ROUTING

• On the smallNORB benchmark, capsules reduce the number of test errors by 45% compared to
the state-of-the-art. Capsules also show far more resistance to white box adversarial attack than
our baseline convolutional neural network.

Pros

Cons

References

• Transforming auto-encoders , Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. In International
Conference on Artificial Neural Networks, pages 44–51. Springer, 2011.

• Dynamic Routing Between Capsules, Sara Sabour, Nicholas Frosst, Geoffrey E Hinton, Nov 2017

• (Matrix capsules with EM routing, Anonymous authors, Paper under double-blind review)

• https://www.slideshare.net/kyuhwanjung/vuno-dl-seminarcapsnetskyuhwanjung20171109

• https://kndrck.co/posts/capsule_networks_explained/

• https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-
ii-how-capsules-work-153b6ade9f66

• Aurélien Géron, Capsule Networks (CapsNets) – Tutorial

https://arxiv.org/find/cs/1/au:+Sabour_S/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Frosst_N/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Hinton_G/0/1/0/all/0/1
https://www.slideshare.net/kyuhwanjung/vuno-dl-seminarcapsnetskyuhwanjung20171109
https://kndrck.co/posts/capsule_networks_explained/
https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-ii-how-capsules-work-153b6ade9f66
https://www.youtube.com/channel/UCCvGd1WBMpFQ_vtC89VF2qA

