
An Overview of Semantic Image Segmentation with Deep Learning

Simone Bonechi

Outline

- Semantic Image Segmentation
- Deep Network for Semantic Segmentation
 - FCN (Fully Convolutional Neural Network)
 - DeconvNet
 - PSPNet (Pyramid Scene Parsing Network)
- Work in progress...

Semantic Image Segmentation

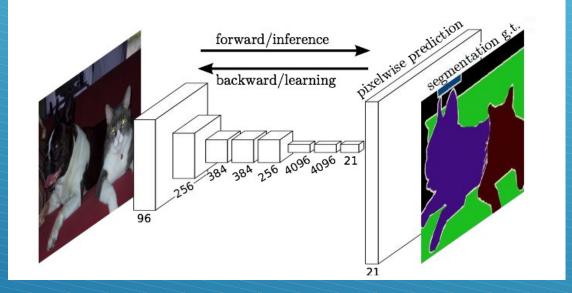
Instance-Level Segmentation

Its main purpose is to identify objects of the same class and split them into different instances

Results on PascalVoc 2012

		mean	aero plane	bicycle	bird	boat	bottle	bus	car	cat	chair	cow	dining table	dog	horse	motor bike	person	potted plant	sheep	sofa	train	tv/ monitor	submission date
		-	\bigtriangledown																				
•	DeepLabv3+_JFT [?]	89.0	97.5	77.9	96.2	80.4	90.8	98.3	95.5	97.6	58.8	96.1	79.2	95.0	97.3	94.1	93.8	78.5	95.5	74.4	93.8	81.6	09-Feb-2018
⊳	DeepLabv3+ [?]	87.8	97.0	77.1	97.1	79.3	89.3	97.4	93.2	96.6	56.9	95.0	79.2	93.1	97.0	94.0	92.8	71.3	92.9	72.4	91.0	84.9	09-Feb-2018
⊳	DeepLabv3-JFT [?]	86.9	96.9	73.2	95.5	78.4	86.5	96.8	90.3	97.1	51.4	95.0	73.4	94.0	96.8	94.0	92.3	81.5	95.4	67.2	90.8	81.8	05-Aug-2017
⊳	DIS [?]	86.8	94.0	73.3	93.5	79.1	84.8	95.4	89.5	93.4	53.6	94.8	79.0	93.6	95.2	91.5	89.6	78.1	93.0	79.4	94.3	81.3	13-Sep-2017
⊳	CASIA_IVA_SDN [?]	86.6	96.9	78.6	96.0	79.6	84.1	97.1	91.9	96.6	48.5	94.3	78.9	93.6	95.5	92.1	91.1	75.0	93.8	64.8	89.0	84.6	29-Jul-2017
⊳	IDW-CNN [?]	86.3	94.8	67.3	93.4	74.8	84.6	95.3	89.6	93.6	54.1	94.9	79.0	93.3	95.5	91.7	89.2	77.5	93.7	79.2	94.0	80.8	30-Jun-2017
⊳	HPN [?]	85.8	94.1	67.0	95.2	81.9	88.3	95.5	90.4	95.9	40.0	92.7	82.5	91.7	95.3	92.6	91.6	73.6	94.1	69.4	91.1	81.9	13-Dec-2017
⊳	DeepLabv3 [?]	85.7	96.4	76.6	92.7	77.8	87.6	96.7	90.2	95.4	47.5	93.4	76.3	91.4	97.2	91.0	92.1	71.3	90.9	68.9	90.8	79.3	20-Jun-2017
⊳	PSPNet [?]	85.4	95.8	72.7	95.0	78.9	84.4	94.7	92.0	95.7	43.1	91.0	80.3	91.3	96.3	92.3	90.1	71.5	94.4	66.9	88.8	82.0	06-Dec-2016

▶ POSTECH DeconvNet CRF VOC [?] 74.8 90.0 40.8 84.2 67.3 70.7 90.9 84.8 87.4 34.8 83.0 58.7 82.3 87.1 86.9 82.4 64.5 84.6 54.9 77.5 64.1 18-Aug-2015


▶ FCN-8s [?]

62.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 12-Nov-2014

BONN_02PCPMC_FGT_SEGM [?]

47.8 64.0 27.3 54.1 39.2 48.7 56.6 57.7 52.5 14.2 54.8 29.6 42.2 58.0 54.8 50.2 36.6 58.6 31.6 48.4 38.6 08-Aug-2013

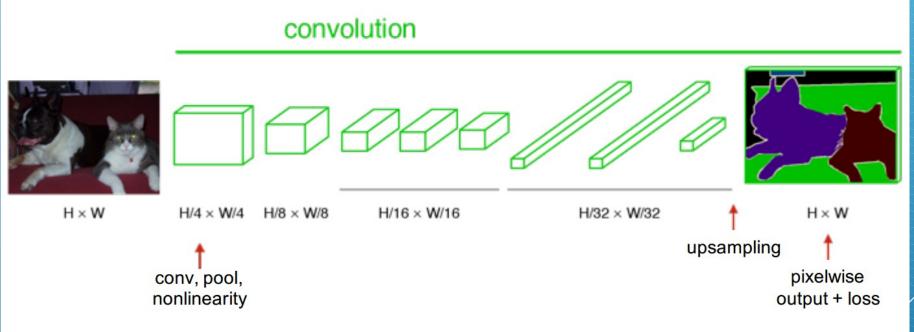
Fully Convolutional Neural Network (FCN)

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440).

FCN Overview

- Tested with AlexNet, VGG and GoogLeNet
- Reinterpret standard classification convnets as "Fully convolutional" networks (FCN) for semantic segmentation
- Combine information from different layers for segmentation

Replace FC with Convolutions

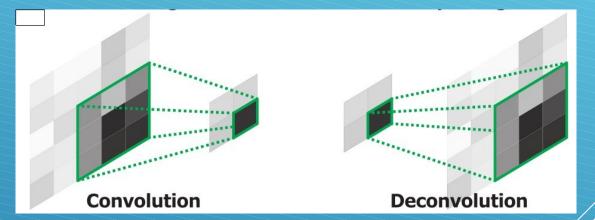

	conv	olution	fully connected
-	A	<i>OO</i> A	3///
			/ / /

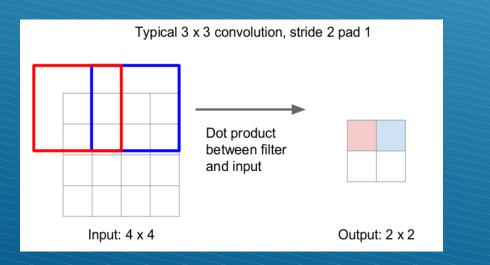
Becoming fully convolutional

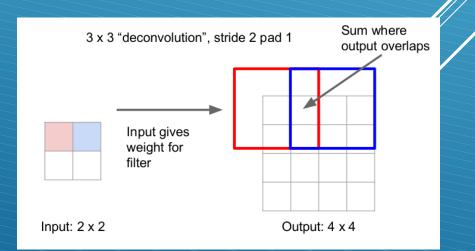
convolution

 13×13 227×227 55×55 27×27 1×1

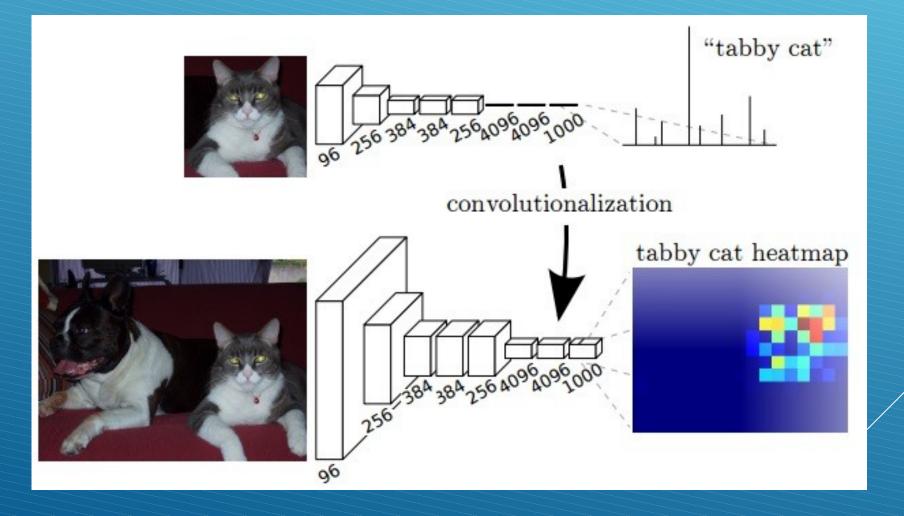
Upsampling the output

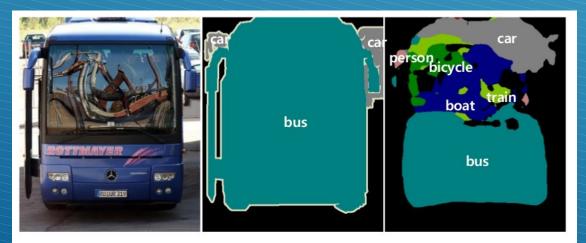


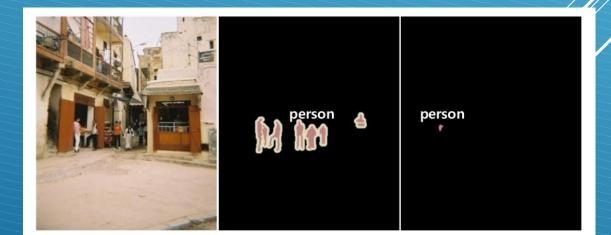

Convolution & Deconvolution


- Deconvolution
- Transposed convolution
- Fractionally strided convolution
- Backward strided convolution
- Upconvolution

>

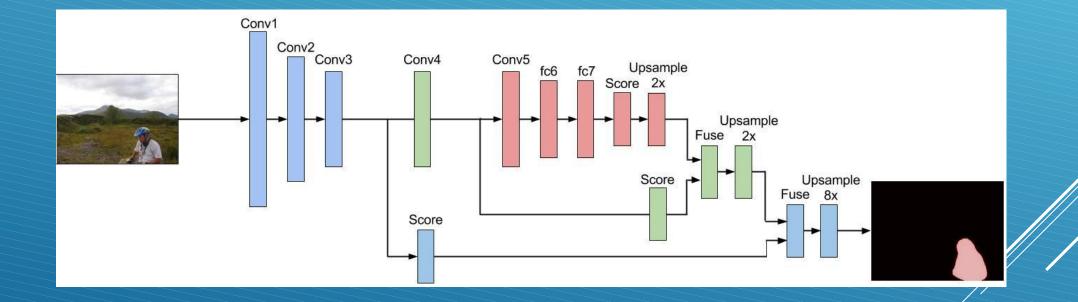

.


Upsampling the output


FCN Limitations

Fixed-size receptive field

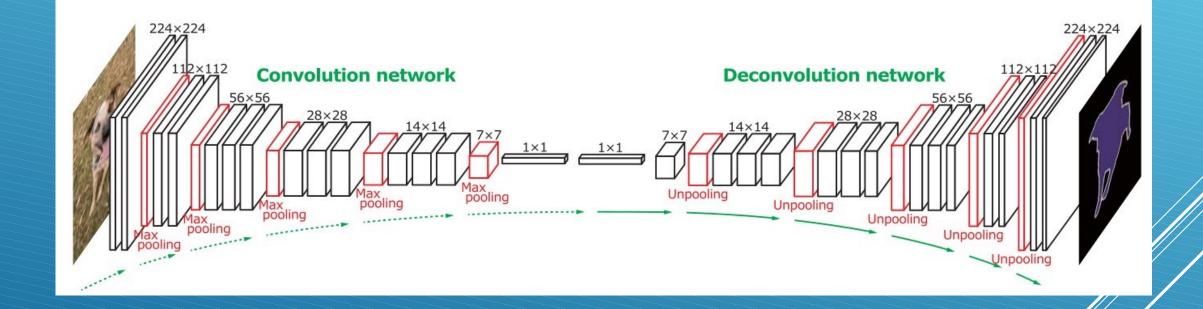
- FCN has fixed-size receptive field; objects substantially larger or smaller than the receptive field may be fragmented or mislabeled
- Label map is so small, tend to forget detail structures of object



(a) Inconsistent labels due to large object size

(b) Missing labels due to small object size

FCN skip architecture

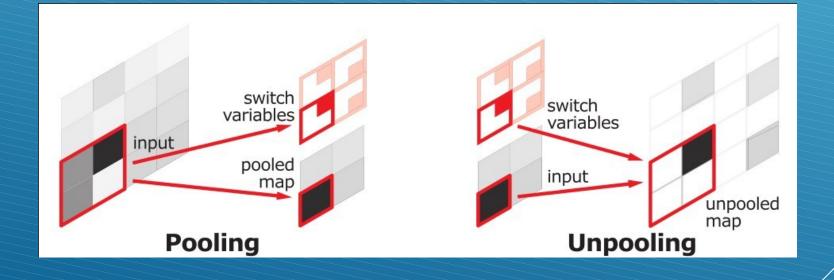


FCN Results

Results on PascalVOC 2012

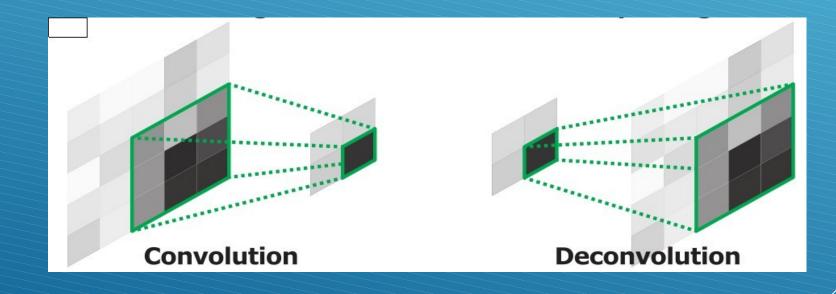
	pixel	mean	mean
	acc.	acc.	IU
FCN-32s-fixed	83.0	59.7	45.4
FCN-32s	89.1	73.3	59.4
FCN-16s	90.0	75.7	62.4
FCN-8s	90.3	75.9	62.7

DeconvNet

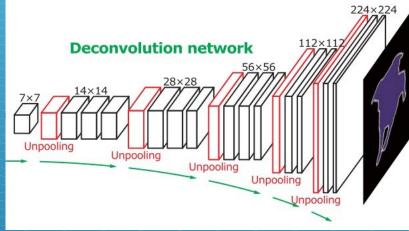


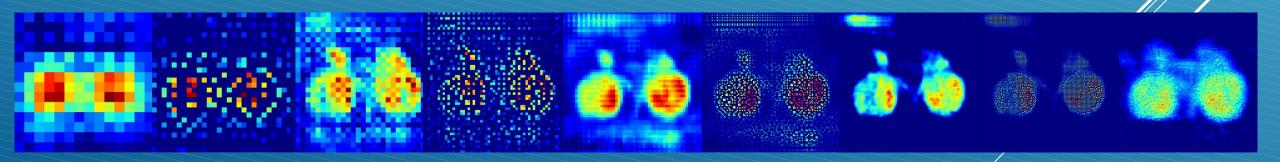
Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1520-1528).

Pooling & Unpooling

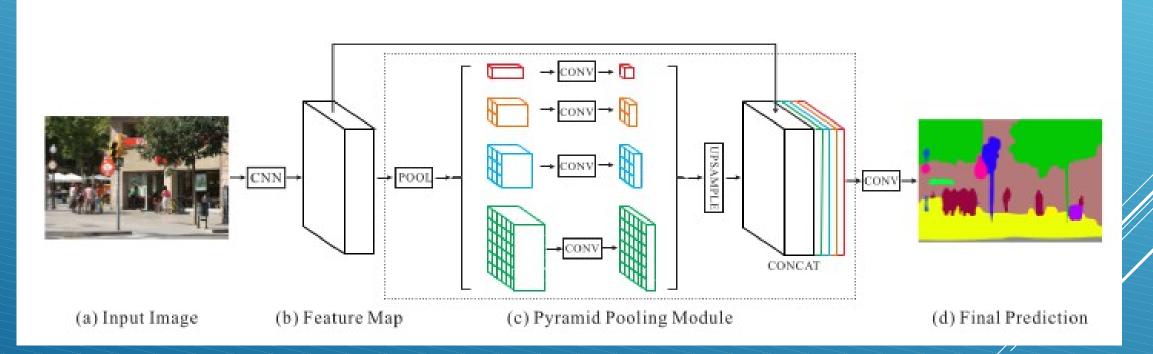

Unpooling

- Retrieve structure of original activation map
- Activation size is preserved, but still sparse


Convolution & Deconvolution

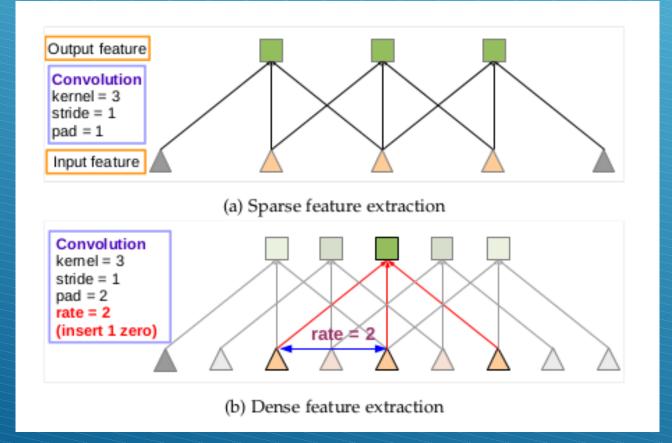

- > Deconvolution
 - Densify sparse activation map

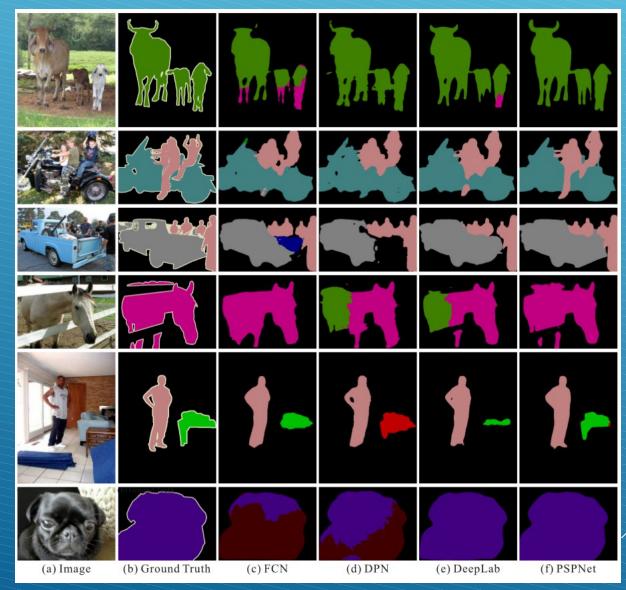
Visualization of activations



Results - Comparisons

Method	bkg	aero	bike	bird	boat	bottle	bus	car	cat	chair	COW	table	dog	horse	mbk	person	plant	sheep	sofa	train	tv	mean
EDeconvNet+CRF	93.1	89.9	39.3	79. 7	63.9	68.2	87.4	81.2	86.1	28.5	77.0	62.0	79.0	80.3	83.6	80.2	58.8	83.4	54.3	80. 7	65.0	72.5
DeepLab-CRF	93.1	84.4	54.5	81.5	63.6	65.9	85.1	79.1	83.4	30.7	74.1	59.8	79.0	76.1	83.2	80.8	59 .7	82.2	50.4	73.1	63.7	71.6
TTI-Zoomout-16	89.8	81.9	35.1	78.2	57.4	56.5	80.5	74.0	79.8	22.4	69.6	53.7	74.0	76.0	76.6	68.8	44.3	70.2	40.2	68.9	55.3	64.4
FCN8s	91.2	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9	55.1	62.2
MSRA-CFM	87.7	75.7	26.7	69.5	48.8	65.6	81.0	69.2	73.3	30.0	68.7	51.5	69.1	68.1	71.7	67.5	50.4	66.5	44.4	58.9	53.5	61.8
Hypercolumn	88.9	68.4	27.2	68.2	47.6	61.7	76.9	72.1	71.1	24.3	59.3	44.8	62.7	59.4	73.5	70.6	52.0	63.0	38.1	60.0	54.1	59.2


PSP-net


Zhao, Hengshuang, et al. "Pyramid scene parsing network." IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2017.

Atrous Convolution

> Upsample with atrous convolution to compute feature densely

PSPNet Results

