
DEEP ARCHITECTURES

Marco Gori, Lisa Graziani

ARCHITECTURAL ISSUES
Digraphs and feedforward networks

Any linear threshold units (LTU) can be regarded as vertexes of a graph
which carries out a collective computation. If the neuron is a classic LTU
the only consistent computational mechanism that can be constructed is
based on Directed Acyclic Graph (DAG).

• A DAG G is a digraph that contains no oriented cycles.

• G = (V ,A), where V is the set of vertices and A is the set of arcs.

1

2

3

4

5

6

7

8

+1

This data flow scheme can be expressed by the partially ordered set

S = {{1, 2} , {3} , {4} , {5} , {6, 7} , {8}} .

ARCHITECTURAL ISSUES
Feedforward Neural Network

A feedforward neural network FFN is a DAG G with
V = I ∪H ∪ O, and the following computational structure:

xp = vp [p ∈ I] + σ

(∑
q∈pa(p)

wpqxq + bp

)
[p ∈H ∪ O].

- I is the input layer, H is the hidden layer and O is the output
layer.

- p states a vertex.

- wpq ∈ R is the weight attached to the arch p → q.

- bp ∈ R is the bias relative to p.

- pa(p) = {q ∈ V : q → q ∈ A }, is the set of the parents of p.

- The activation relative to the vertex p is
ap =

∑
q∈pa(p) wpqxq + bp.

ARCHITECTURAL ISSUES
Example of FFN

1

2

y

3

4

5

6

7

8

9

+1

The neurons are organized into two hidden layers (3, 4, 5) and (6, 7, 8)
and there is an output layer composed of neuron 9.

S = {{1, 2} , {3, 4, 5} , {6, 7, 8} , {9}} .

Here, we have the total ordering {1, 2} ≺ {3, 4, 5} ≺ {6, 7, 8} ≺ {9},
whereas there is no ordering inside the layers.

ARCHITECTURAL ISSUES

We can represent the previous multi-layered network in a compact
way with layers and interconnection matrices.

0 1 2 3
yW1 W2 W3

Wl is the matrix associated with the pair of layers l − 1, l .

The output is
y = σ(W3σ(W2σ(W1x))).

In general we have
xl = σ(Wlxl−1)

with x0 := x .

ARCHITECTURAL ISSUES

In case of linearity, a feedforward network of L layers collapses to a
single layer. We have σ(·) := id(·), therefore

y =
L∏

`=1

W`x = Wx , where W :=
L∏

`=1

W`.

But the computational collapsing of layers is a rare property. In
general, there is no matrix W3 such that

σ(W2(σ(W1(x))) = σ(W3x).

ARCHITECTURAL ISSUES

There are different kinds of neurons:

• Ridge neurons determine the output
y = g(w , b, x) = σ(w ′x + b).

• Radial basis function neurons determine the output
y = g(w , b, x) = k(‖x − w‖/b), where k is usually a
bell-shaped function.

REALIZATION OF BOOLEAN
FUNCTIONS

We can realize cascade of LTU to represent boolean functions.
The truth table of the boolean function f (x , y) is the sequence of
the four values f (0, 0)f (0, 1)f (1, 0)f (1, 1), where 1 corresponds to
T and 0 to F.
Let us consider Heaviside linear-threshold units.

• AND function
We want to realize the truth table 0001 by a linear-threshold
function x1 ∧ x2 = [w1x1 + w2x2 + b ≥ 0].
The solutions are the vectors (w1,w2, b)′ ∈ R3 such that

(b < 0) ∧ (w2 + b < 0) ∧ (w1 + b < 0) ∧ (w1 + w2 + b > 0).

A possible solution is (w1,w2, b) = (1, 1,−3
2).

The solution space W∧ is convex.

REALIZATION OF BOOLEAN
FUNCTIONS

• OR function
We want to realize the truth table 0111 by
[w1x1 + w2x2 + b ≥ 0].

The solutions are the vectors (w1,w2, b)′ ∈ R3 such that

(b < 0) ∧ (w2 + b > 0) ∧ (w1 + b > 0) ∧ (w1 + w2 + b > 0).

A possible solution is (w1,w2, b) = (1, 1,−1
2).

The solution space W∨ is convex.

REALIZATION OF BOOLEAN
FUNCTIONS

• XOR function

x1 ⊕ x2 = ¬x1 ∧ x2 ∨ x1 ∧ ¬x2.

Unlike the case of ∧ and ∨, the set

L = {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 0)}

is not linearly separable. The equation

(b < 0) ∧ (w2 + b) > 0 ∧ (w1 + b) > 0 ∧ (w1 + w2 + b < 0)

has no solution (W⊕ = ∅).
We cannot compute the XOR function using a single LTU.

REALIZATION OF BOOLEAN
FUNCTIONS

There are many ways to represent the XOR using a multilayered
network.

1 2

3 4

5

Input x1 and x2 must be mapped by the hidden layer to x3 and x4
such that it can be linearly separated by the neuron 5.

REALIZATION OF BOOLEAN
FUNCTIONS

I) The inputs are mapped into a linearly separable configuration:

x3 = [x1 + x2 − 1/2 ≥ 0]

x4 = [−x1 − x2 + 3/2 ≥ 0].

x1

x2

x3

x4

3

4

REALIZATION OF BOOLEAN
FUNCTIONS

II) x1 ∧ x2 and x1 ∧ ¬x2 can be represented by LTU with the
Heaviside function.
Units 3 and 4 detect x1 ∧ ¬x2 and ¬x1 ∧ x2, respectively, and
then neuron 5 acts as an OR.

¬x1 ∧ x2 = [−x1 + x2 − 1/2 ≥ 0]
x1 ∧ ¬x2 = [x1 − x2 − 1/2 ≥ 0]

x1

x2

x3

x4
3

4

REALIZATION OF BOOLEAN
FUNCTIONS

Any boolean function can be represented with two layers using the
first canonical form

f (x) =
m∨
j=1

sj∧
k=1

ujk = (u11 ∧ · · · ∧ u1s1) ∨ · · · ∨ (um1 ∧ · · · ∧ umsm),

where uij are literals, which means either a variable xi or its
complement.

REALIZATION OF REAL-VALUED
FUNCTIONS

Real-valued functions can model both regression and classification
problems.

Any neural network with one hidden layer and hard-limiting LTU

characterizes convex domains.

This is an example of classification in R2. The neural network with hard-limiting

LTU returns f (X) = 1. Each neuron in the hidden layer (4, 5, 6, 7) is

associated with a corresponding line, that define the convex domain X .

REALIZATION OF REAL-VALUED
FUNCTIONS

Through a neural network with two hidden layers we can characterize

non-connected domains.

The neurons 4, 5, 6 and 6, 7, 8 characterize the convex sets X1 and X2,

respectively. The neurons 9 and 10 establish if x ∈X1 and x ∈X2,

respectively. Finally the output neuron 11 establishes if

x ∈X = X1

⋃
X2 through the OR operation.

REALIZATION OF REAL-VALUED
FUNCTIONS

The construction shown for non-connected convex sets can be used to
realize any concave set.

We can provide a partition of X by convex sets X1 and X2.

The neuron 5 participates to the construction of both the convex sets.

In general, given X concave we need to find a family of sets
FX = {Xi , i = 1, . . . ,m} such that

∨m
i=1 Xi = X .

CONVOLUTIONAL NETWORKS

• Convolutional networks are mostly used in computer vision.

• They allow to extract invariant features and this is important
when we consider spatiotemporal information.

Let Z ⊂ R2 be the retina, where each pixel is identified by
z = (z1, z2). Let v(z) ∈ R`m be the brightness on pixel z , where
` m = 1 for black-white pictures and ` m = 3 for color pictures.
We can take a compact representation of the contextual
information associated with z :

y(z) := g(z , ·) ∗ v(·) =

∫
Z
g(z , u)v(u)du, (1)

where g : Z 2 → Rm,`m is a kernel-based filter.

CONVOLUTIONAL NETWORKS

If g(z , u) = h(z − u),

y(z) =

∫
Z
h(z − u)v(u)du

is the convolution of filter g(·) with the video signal v(·).

• The convolution returns a feature vector y(z) ∈ Rm that
depends on the pixel z on which we are focussing attention.

• Map y(·) represents contextual information, whereas map v(·)
only expresses lighting properties of the single pixel, regardless
of its neighbors.

• Convolution is associative and commutative.

CONVOLUTIONAL NETWORKS
Video

We can use the eq. (1) to get a context in the processing of video
streams. The video signal is represented by v(t, z), where the
retina domain Z now becomes V = Z ×T , being T = [to , t1]
the temporal domain of the video.
If we define ζ := (t, z), µ := (τ, u) then we have

y(ζ) := g(ζ, ·) ∗ v(·) =

∫
V
g(ζ, µ)v(µ)dµ.

LEARNING IN FEEDFORWARD NETS

• Learning algorithms typically require to compute the gradient
of the loss for any example v , that is ∇e, where
e(w , v , y) = V (y , f (w , v)).

• The derivatives of a function can either be computed
numerically or symbolically. For instance, if we want to
compute σ′(a), where σ(a) = 1/(1 + e−a), the symbolic
derivative is σ′(a) = σ(a)(1− σ(a)).

• The numerical computation produces roundoff errors and is
very expensive for high dimensional problems.

LEARNING IN FEEDFORWARD NETS
Forward propagation

Algorithm F FORWARD(G,w ,m, v , x)

• N = (G,w) network based on the DAG G with weights w

• m vector used as a weight modifier

• v vector of inputs

For all i ∈ V \I it computes the state of vertex i and stores the
value in the vector xi (then in particular it computes the function
function f (w , v) that is specified by the values xo with o ∈ O).

TOPSORT (S , s) takes a set S and copies the elements of this set in

the array s topologically sorted, so that for each i and j with i < j we

have si ≺ sj .

LEARNING IN FEEDFORWARD NETS
Forward propagation

F1. [Initialize] For all i ∈ I set xi ← vi and initialize an integer
variable k ← 1.

F2. [Topsort] Invoke TOPSORT on the set V \I , so that the
vector s contains the topological sorting of the nodes of the
net. Set the variable l to the dimension of the vector s.

F3. [Finished yet?] If k ≤ l go on to step F4, otherwise the
algorithm stops.

F4. [Compute the state x] If m = (1, 1, . . . , 1) set
xsk ← σ

(∑
j∈pa(sk) wsk jxj

)
otherwise set

xsk ← msk

∑
j∈pa(sk) wsk jxj . Increase k by one and go back to

step F3.

LEARNING IN FEEDFORWARD NETS
Backpropagation

• Numerical algorithms for the gradient computation are
Θ(m2), where m is the number of weights.

• FNNs are sometimes applied in problems where m is order of
millions. The numerical computation of the gradient in those
cases would require order of teraflops.

• Backpropagation is the best gradient computation algorithm:
is Θ(m).

• We can write

∂e

∂w
=
∂V

∂f
· ∂f
∂w

=
∑
o∈O

∂V

∂fo

∂fo
∂w

,

so whenever we are given a symbolic expression for
V (y , f (w , v)), we can also give a corresponding symbolic
expression to ∂e

∂w .

LEARNING IN FEEDFORWARD NETS
Backpropagation

Consider the derivative of fo(w , v) = xo with respect to wij , and
call this quantity go

ij ; by using the chainrule, we get

go
ij =

∂xo
∂wij

=
∂xo
∂ai

∂ai
∂wij

=
∂xo
∂ai

∂

∂wij

∑
h∈pa(i)

wihxh = δoi xj , (2)

where δoi ≡ ∂xo/∂ai is the delta error.

The delta error of an output neuron is

δoo = σ′(ao). (3)

For example in the case of logistic function δoo = xo(1− xo).

By using the chain rule we have

δoi =
∂xo
∂ai

=
∑

h∈ch(i)

∂xo
∂ah

∂ah
∂xi

∂xi
∂ai

= σ′(ai)
∑

h∈ch(i)

whiδ
o
h . (4)

LEARNING IN FEEDFORWARD NETS
Backpropagation

Equations (3) and (4) allow us to determine δoi by propagating
backward the values δoo throughout the hidden units i ∈H .

x1 x2

x3 x4 x5 x6 x7

x8 x9

x10

δ3 δ4 δ5 δ6 δ7

δ8 δ9

δ10

The backward step propagates recursively the delta error beginning
from the output through its children. For example,
δ5 = σ′(a5)(w85δ8 + w95δ9).

LEARNING IN FEEDFORWARD NETS
Backpropagation

Now we want to calculate the derivative of the loss V with respect
to the generic weight wij . We can follow the steps done in eq.(2):

∂V

∂wij
=
∂V

∂ai

∂ai
∂wij

= δixj ,

where δi = ∂V /∂ai .

After the forward phase, we can immediately evaluate δo once we
know the symbolic expression of V . For example for the quadratic
loss V (y , f) = 1

2(y − f)2, δo = (yo − σ(ao))σ′(ao).

Then we can recursively evaluate all the other δi using the
analogous of eq.(4):

δi =
∑

h∈ch(i)

∂V

∂ah

∂ah
∂xi

∂xi
∂ah

= σ′(ai)
∑

h∈ch(i)

whiδh.

LEARNING IN FEEDFORWARD NETS
Backpropagation

Algorithm B BACKWARD(G,w , x , q,V)

Algorithm that computes the derivatives either of the output or of
the loss function of a general DAG with respect to the weights.

• N = (G,w) network based on the DAG G with weights w

• x vector that contains the states of the vertices of G
• q parameter

• V loss function

If q > 0 it returns the derivatives gq
ij , otherwise returns the

derivatives of the loss ∂V /∂wij .

LEARNING IN FEEDFORWARD NETS
Backpropagation

B1. [Loss or output?] If q ≤ 0 go to step B2, otherwise jump to
step B3.

B2. [Initialize for the loss] For all o ∈ O set vo ← ∂V /∂ao and go
to step B4.

B3. [Initialize for xq] For each o ∈ O if o 6= q set vo ← 0,
otherwise vo ← σ′(

∑
h∈pa(o) wohxh

)
.

B4. [Compute Backwards] For each k ∈ V \I set
mk ← σ′

(∑
h∈pa(k) wkhxh

)
, then invoke

FORWARD((G \I)′,w ′,m, v , δ).
(G \ I)′ is the graph obtained by reversing the direction of the arrows of

G without the input nodes.

B5. [Output the gradient] For each i ∈ V \I and then for each
j ∈ pa(i) set gij ← δixj and output gij . Terminate the
algorithm.

LEARNING IN FEEDFORWARD NETS
Backpropagation

Algorithm FB

Given a network N = (G,w) based on the DAG G, a vector of
inputs v , and a loss function V , it returns the gradient of the loss
with respect to w .

FB1. [Forward] Invoke FORWARD(G,w , (1, 1, . . . , 1), v , x).

FB2. [Backward] Invoke BACKWARD(G,w , x ,−1,V). Terminate
the algorithm.

LEARNING IN FEEDFORWARD NETS
Backpropagation

We can express the forward/backward equations using the tensor

formalism.

Forward step:

X̂` = σ(X̂`−1Ŵ`), ` = 0, . . . , L. (5)

If we have a structure with L layers

X̂L = σ(. . . σ(σ(X̂0Ŵ1)Ŵ2) . . . ŴL).

Backward step:

∆`−1 = σ′ � (∆`W`) (6)

G` = X̂ ′`−1∆` (7)

where σ′ ∈ RL,`−1 is the matrix with coordinates σ′(ai,κ), � is the

Hadamard product, and ∆` := (δ1, . . . , δn(`)) ∈ R`,n(`), where n(`) is the

number of nodes in the layer `.

