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FEATURE SPACE

• The linear machines are limited either in regression or in
classification. The linearity assumption in some real-world
problems is quite restrictive.

• We need to transform the input space to an enriched space
(feature space) in order to deal with not-linear problem or not
linearly-separable patterns.

• The features are determined by the feature map

φ : X ⊂ Rd →H ⊂ RD ,

where in most cases, D ≥ d , and often D � d .



FEATURE SPACE
Example

Suppose we are given a classification problem with patterns
x ∈X ⊂ R2. We consider the associated feature space defined by
the map φ : X ⊂ R2→H ⊂ R3 such that x → z = (x21 , x1x2, x

2
2 )′.

Linear-separability in H yields a quadratic separation in X :

a1z1 + a2z2 + a3z3 + a4 = a1 · x21 + a2 · x1x2 + a3 · x22 + a4.



FEATURE SPACE
Example



MAXIMUM MARGIN PROBLEM
Classification under linear-separability

Let us consider a linear machine in the feature space

f (x) = w ′φ(x) + b = ŵ ′φ̂(x),

where φ̂(x) := (φ1(x), . . . , φD(x), 1)′.

Let L = {(xκ, yκ), κ = 1, . . . , `} be the training set, with
yκ ∈ {−1,+1}, and let us assume that the feature space
Lφ = {(φ(xκ), yκ), κ = 1, . . . , `} is linearly-separable.

The maximum margin problem is determining ŵ? such that

ŵ? = arg max
ŵ

{
1

‖ w ‖
min
κ

(
yκ · ŵ ′φ̂(xκ)

)}
. (1)



MAXIMUM MARGIN PROBLEM
Geometrical interpretation of the problem in the feature space

The distance of φ(xκ) to the hyperplane defined by ŵ is

d(κ, ŵ) :=
yκ · ŵ ′φ̂(xκ)

‖w‖
=
|ŵ ′φ̂(xκ)|
‖w‖

.

(The equivalence yκ · ŵ ′φ̂(xκ) = |ŵ ′φ̂(xκ)| is due to hypothesis of linearly

separable examples in the feature space.)

So we have to find the hyperplane defined by ŵ such that the
distance between the nearest φ(xκ) and the hyperplane is
maximized. This distance is called MARGIN.



MAXIMUM MARGIN PROBLEM
Example

In 2-dimensional spaces we have to find the separation line such that the

distance between the nearest point to the line in each side and the line is

maximized.
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MAXIMUM MARGIN PROBLEM

The maximum margin problem (1) is equivalent to the following
optimization problem:min

1

2
w2

1− yκ · ŵ ′φ̂(xκ) ≤ 0, κ = 1, . . . , `
(2)

To solve it we consider the Lagrangian function:

L(ŵ , λ) =
1

2
w2 +

∑̀
κ=1

λκ

(
1− yκ · ŵ ′φ̂(xκ)

)
, with λ ≥ 0. (3)



MAXIMUM MARGIN PROBLEM

If we impose ∇L(ŵ , λ) = 0 then we have

∂wL(ŵ , λ) = w −
∑̀
κ=1

λκyκφ(xκ) = 0

∂bL(ŵ , λ) = −
∑̀
κ=1

λκyκ = 0.

Now we can re-write the Lagrangian as function of the Lagrangian
multiplier only.
From the first equation we obtain w =

∑`
κ=1 λκyκφ(xκ).



MAXIMUM MARGIN PROBLEM

θ(λ) = inf
ŵ
L(ŵ , λ) =

1

2

(∑̀
h=1

λhyhφ(xh)
)′∑̀

κ=1

λκyκφ(xκ)

−
∑̀
κ=1

λκyκ
(∑̀

h=1

(
λhyhφ(xh)

)′
φ(xκ) + b

)
+
∑̀
κ=1

λκ

=
1

2

∑̀
h=1

∑̀
κ=1

λhλκyhyκφ(xh)′φ(xκ)

−
∑̀
h=1

∑̀
κ=1

λhλκyhyκφ(xh)′φ(xκ)− b
∑̀
κ=1

λκyκ +
∑̀
κ=1

λκ

= −1

2

∑̀
h=1

∑̀
κ=1

λhλκyhyκφ(xh)′φ(xκ) +
∑̀
κ=1

λκ.



MAXIMUM MARGIN PROBLEM

The maximum margin problem (2) is equivalent to the dual
optimization problem:

max θ(λ) =
∑̀
κ=1

λκ −
1

2

∑̀
h=1

∑̀
κ=1

k(xh, xκ)yhyκ · λhλκ

λκ ≥ 0, κ = 1, . . . , `∑̀
κ=1

λκyκ = 0

(4)

where k is the kernel function:

k : X ×X → R : k(xh, xκ) := φ′(xh)φ(xκ).



MAXIMUM MARGIN PROBLEM

The optimal function turns out to be

f ?(x) = (w?)′φ(x) + b? =
∑̀
κ=1

(λ?κyκφ(xκ))′ φ(x) + b?

=
∑̀
κ=1

yκλ
?
κk(xκ, x) + b?.

If we define λ̂ := (λ1, . . . , λ`, b)′ and ki (x) := k(xi , x) then
f (x) = λ̂′k(x).

• Primal: f (x) = ŵ ′φ̂(x), parameter ŵ .

• Dual: f (x) = λ̂′k(x), parameter λ̂.



MAXIMUM MARGIN PROBLEM

From the Karush Kuhn Tucker (KKT) conditions we have

λ?κ(yκf
?(xκ)− 1) = 0, κ = 1, . . . , `.

• λ?κ = 0. V yκf
?(xκ) > 1, and this means that the stationary

condition is satisfied with an interior coordinate.
xκ is called a straw vector.

• λ?κ > 0. V yκf
?(xκ) = 1, and this means that the stationary

condition is met on the border.
xκ is called a support vector.



MAXIMUM MARGIN PROBLEM
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MAXIMUM MARGIN PROBLEM
Dealing with soft-constraints

In the previous margin problem (2) the patterns are assumed to be
linearly-separable, but this is a critical assumption.
We relax the constraints: we introduce slack variables ξκ,
κ = 1, . . . , `, one for each example. They are used for tolerating
the violation of the constraints as follows{

yκf (xκ) ≥ 1− ξκ
ξκ ≥ 0.

(5)

• ξκ = 0 V previous MMP formulation.

• ξκ ∈ (0, 1) V the solution is still correct.

• ξκ = 1 V f (xκ) = 0, so we have uncertain decision.

• ξκ > 1 V we have the strongest constraint relaxation, that
might led to errors.



MAXIMUM MARGIN PROBLEM

The constraints defined by (5) suggest us to define the following
optimization problem:

min
1

2
w2 + C

∑̀
κ=1

ξκ

yκf (xκ) ≥ 1− ξκ,
ξκ ≥ 0, κ = 1, . . . , `.



MAXIMUM MARGIN PROBLEM

The Lagrangian is

L(ŵ , ξ, λ) =
1

2
w2 +C

∑̀
κ=1

ξκ−
∑̀
κ=1

(yκf (xκ)−1 + ξκ)λκ−
∑̀
κ=1

µκξκ.

If we impose ∇L(ŵ , ξ, λ) = 0 then we have

∂wL = 0⇒ w −
∑̀
κ=1

λκyκφ(xκ) = 0

∂bL = 0⇒
∑̀
κ=1

λκyκ = 0

∂ξκL = 0⇒ C − λκ − µκ = 0.



MAXIMUM MARGIN PROBLEM

Now, the last condition make it possible to re-write the Lagrangian
as

L(ŵ , ξ, λ, µ) =
1

2
w2 −

∑̀
κ=1

λκ(yκŵ
′φ̂(xκ)− 1) +

∑̀
κ=1

(C − λκ − µκ)ξκ

=
1

2
w2 −

∑̀
κ=1

λκ(yκŵ
′φ̂(xκ)− 1).

It is the same Lagrangian as the one of the primal formulation of
MMP in case of hard constraints (3).



MAXIMUM MARGIN PROBLEM

If we replace ŵ into L(ŵ , ξ, λ), we obtain the dual problem:

max
∑̀
κ=1

λκ −
1

2

∑̀
h=1

∑̀
κ=1

λhλκyhyκk(xh, xκ)

0 ≤ λκ ≤ C , κ = 1, . . . , `∑̀
κ=1

λκyκ = 0.

As C →∞ this soft-constrains problem is turned into the
correspondent hard formulation (4).



MAXIMUM MARGIN PROBLEM
Regression

We have pairs (xκ, yκ) where yκ ∈ R.
Let ε > 0 be and consider the constraint |yκ − f (xκ)| ≤ ε.
Like for classification, we can introduce slack variables.

We formulate the regression problem as

min
1

2
w2 + C

∑̀
κ=1

(ξ−κ + ξ+κ )

[yκ − f (xκ) ≥ 0](yκ − f (xκ) ≤ ε+ ξ+κ )

+ [f (xκ)− yκ < 0](f (xκ)− yκ ≤ ε+ ξ−κ )

ξ+κ ≥ 0, ξ−κ ≥ 0.



MAXIMUM MARGIN PROBLEM
The Lagrangian is

L =
1

2
w2 + C

∑̀
κ=1

(ξ−κ + ξ+κ ) +
∑̀
κ=1

λ+κ (yκ − ŵ ′φ̂(xκ)− ε− ξ+κ )

+
∑̀
κ=1

λ−κ (ŵ ′φ̂(xκ)− yκ − ε− ξ−κ )−
∑̀
κ=1

µ+κ ξ
+
κ −

∑̀
κ=1

µ−κ ξ
−
κ .

In order to pass to the dual space we determine the critical points

∂wL = 0⇒ w −
∑̀
κ=1

(λ+κ − λ−κ )φ̂(xκ) = 0

∂bL = 0⇒
∑̀
κ=1

(λ+κ − λ−κ ) = 0

∂ξ+κL = 0⇒ C − λ+κ − µ+κ = 0

∂ξ−κ L = 0⇒ C − λ−κ − µ−κ = 0.



MAXIMUM MARGIN PROBLEM

We obtain the following dual problem

max θ(λ+, λ−) = −1

2

∑̀
h=1

∑̀
κ=1

(λ+h − λ
−
h )(λ+κ − λ−κ )k(xh, xκ)

− ε
∑̀
κ=1

(λ+κ + λ−κ ) +
∑̀
κ=1

yκ(λ+κ − λ−κ )

∑̀
κ=1

λ+κ =
∑̀
κ=1

λ−κ

0 ≤ λ+κ ≤ C

0 ≤ λ−κ ≤ C

where k(xh, xκ) = 〈φ̂(xh), φ̂(xκ)〉.



KERNEL FUNCTIONS

We have already seen the definition of kernel:

k : X ×X → R

k(x , z) = 〈φ(x), φ(z)〉 = φ′(x)φ(z).

Kernel trick: kernel functions return a similarity measure between
any two points in the input space which is based on their mapping
to the feature space, without its direct involvement in the
computation.



KERNEL FUNCTIONS
Example

We have X = R2, H = R3 and

(
x1
x2

)
φ→

 x21√
2x1x2
x22

 .

k(xh, xκ) = (x2h1,
√

2xh1xh2, x
2
h2) ·

 x2κ1√
2xκ1xκ2
x2κ2


= x2h1x

2
κ1 + 2xh1xh2xκ1xκ2 + x2h,2x

2
κ,2

= (xh1xκ1 + xh2xκ2)2

= 〈xh, xk〉2.



KERNEL FUNCTIONS

Now we define Gram matrix

K (X ]
` ) =

k(x1, x1), . . . k(x1, x`)
...

...
k(x`, x1), . . . k(x`, x`)

 ∈ R`,` (6)

which is a structured organization of the image of k over a
sampling X ]

` = {x1, x2, . . . , x`} of X . It allows us to replace
functional analysis on the kernel with linear algebra on the
associated Gram matrix.

K (X ]
` ) ≥ 0 ∀X ]

` (i.e. is a non-negative matrix) ⇔ k is a kernel



KERNEL FUNCTIONS
Infinite dimensional feature spaces

As D →∞ the feature vector is

φ(x) = (φ1(x), φ2(x), . . .)′ ∈ R∞.

We introduce the functional operator

Tku(x) =

∫
X

k(x , z)u(z)dz

which replaces the Gram matrix at finite dimension.

Tk ≥ 0 ⇔ k is a kernel



KERNEL FUNCTIONS
Types of kernels

• Linear kernels: k(x , z) = x ′z (φ = id)

• Polynomial kernels: k(x , z) = (x ′z)p

Let be x , z ∈ Rd .

〈x , z〉p =

(
d∑

i=1

xizi

)p

=
∑
|α|=p

p!

α!
(x ◦ z)α =

∑
|α|=p

p!

α!

d∏
i=1

(xizi )
αi

=
∑
|α|=p

(
p!

α!

)1/2 d∏
i=1

(xi )
αi ·
(
p!

α!

)1/2 d∏
i=1

(zi )
αi

=

〈(
p!

α!

)1/2 d∏
i=1

(xi )
αi ,

(
p!

α!

)1/2 d∏
i=1

(zi )
αi

〉
|α|=p

.

The feature vector is φ(u) =
(

p!
α!

)1/2∏d
i=1(ui )

αi .

(α = [α1, . . . , αd ], |α| = α1 + . . .+ αd , α! = α1! . . . αd !,

xα = xα1
1 . . . xαd

d )



KERNEL FUNCTIONS
Types of kernels

• Gaussian kernel: k(x , z) = e−
‖x−z‖2

2σ2

Only infinite-dimensional feature representations are known.
We propose one of those representations by using Taylor’s expansion
in the case of X = R. We have
e−γ(x−z)

2

= e−γx
2+2γxz−γz2 =

e−γx
2−γz2

(
1 + 2γxz

1! + (2γxz)2

2! + . . .
)

=

e−γx
2−γz2

(
1 · 1 +

√
2γ
1! x ·

√
2γ
1! z +

√
(2γ)2

2! x2 ·
√

(2γ)2

2! z2 + . . .

)
.

The feature map is

φ(y) = e−γy
2

(
1,
√

2γ
1! y ,

√
(2γ)2

2! y2, . . .
√

(2γ)i

i! y i , . . .

)′
.



KERNEL FUNCTIONS
Types of kernels

• Dot product kernels: k(x , z) = K (〈x , z〉).
Linear and polynomial kernels are dot product kernels.

• Translation invariance kernels: k(x , z) = K (x − z).
Gaussian kernels are translation invariance kernels.

• Radial kernel: k(x , z) = K (‖x − z‖).
• Bn-splines kernels: k(x , z) = B2p+1(‖x − z‖),

where Bn(u) :=
⊗n

i=1

[
|u| ≤ 1

2

]
and

⊗n
i=1 is the n-fold convolution

of the characteristic function of the interval [− 1
2 ,

1
2 ], and⊗0

i=1

[
|u| ≤ 1

2

]
:=
[
|u| ≤ 1

2

]
.

Bn-splines kernels are an example of translational invariance kernels.

Bn-splines kernels approximate Gaussian kernels as n→∞.



KERNEL FUNCTIONS
Kernel properties

Given α ∈ R, any two kernels k1, k2, and f : X → R then

• k(x , z) = k1(x , z) + k2(x , z)

• k(x , z) = αk1(x , z)

• k(x , z) = k1(x , z) · k2(x , z)
• k(x , z) = f (x)f (z)


