KERNEL MACHINES

Marco Gori, Lisa Graziani

FEATURE SPACE

- The linear machines are limited either in regression or in classification. The linearity assumption in some real-world problems is quite restrictive.
- We need to transform the input space to an enriched space (feature space) in order to deal with not-linear problem or not linearly-separable patterns.
- The features are determined by the feature map

$$
\phi: \mathscr{X} \subset \mathbb{R}^{d} \rightarrow \mathscr{H} \subset \mathbb{R}^{D}
$$

where in most cases, $D \geq d$, and often $D \gg d$.

FEATURE SPACE

Example

Suppose we are given a classification problem with patterns $x \in \mathscr{X} \subset \mathbb{R}^{2}$. We consider the associated feature space defined by the map $\phi: \mathscr{X} \subset \mathbb{R}^{2} \rightarrow \mathscr{H} \subset \mathbb{R}^{3}$ such that $x \rightarrow z=\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)^{\prime}$. Linear-separability in \mathscr{H} yields a quadratic separation in \mathscr{X} :

$$
a_{1} z_{1}+a_{2} z_{2}+a_{3} z_{3}+a_{4}=a_{1} \cdot x_{1}^{2}+a_{2} \cdot x_{1} x_{2}+a_{3} \cdot x_{2}^{2}+a_{4} .
$$

FEATURE SPACE

Example

MAXIMUM MARGIN PROBLEM

Classification under linear-separability

Let us consider a linear machine in the feature space

$$
f(x)=w^{\prime} \phi(x)+b=\hat{w}^{\prime} \hat{\phi}(x)
$$

where $\hat{\phi}(x):=\left(\phi_{1}(x), \ldots, \phi_{D}(x), 1\right)^{\prime}$.
Let $\mathscr{L}=\left\{\left(x_{\kappa}, y_{\kappa}\right), \kappa=1, \ldots, \ell\right\}$ be the training set, with $y_{\kappa} \in\{-1,+1\}$, and let us assume that the feature space $\mathscr{L}_{\phi}=\left\{\left(\phi\left(x_{\kappa}\right), y_{\kappa}\right), \kappa=1, \ldots, \ell\right\}$ is linearly-separable.

The maximum margin problem is determining \hat{w}^{\star} such that

$$
\begin{equation*}
\hat{w}^{\star}=\arg \max _{\hat{w}}\left\{\frac{1}{\|w\|} \min _{\kappa}\left(y_{\kappa} \cdot \hat{w}^{\prime} \hat{\phi}\left(x_{\kappa}\right)\right)\right\} . \tag{1}
\end{equation*}
$$

MAXIMUM MARGIN PROBLEM

Geometrical interpretation of the problem in the feature space

The distance of $\phi\left(x_{\kappa}\right)$ to the hyperplane defined by \hat{w} is

$$
d(\kappa, \hat{w}):=\frac{y_{\kappa} \cdot \hat{w}^{\prime} \hat{\phi}\left(x_{\kappa}\right)}{\|w\|}=\frac{\left|\hat{w}^{\prime} \hat{\phi}\left(x_{\kappa}\right)\right|}{\|w\|} .
$$

(The equivalence $y_{\kappa} \cdot \hat{w}^{\prime} \hat{\phi}\left(x_{\kappa}\right)=\left|\hat{w}^{\prime} \hat{\phi}\left(x_{\kappa}\right)\right|$ is due to hypothesis of linearly separable examples in the feature space.)
So we have to find the hyperplane defined by \hat{w} such that the distance between the nearest $\phi\left(x_{\kappa}\right)$ and the hyperplane is maximized. This distance is called MARGIN.

MAXIMUM MARGIN PROBLEM

Example
In 2-dimensional spaces we have to find the separation line such that the distance between the nearest point to the line in each side and the line is maximized.

MAXIMUM MARGIN PROBLEM

The maximum margin problem (1) is equivalent to the following optimization problem:

$$
\left\{\begin{align*}
\min & \frac{1}{2} w^{2} \tag{2}\\
& 1-y_{\kappa} \cdot \hat{w}^{\prime} \hat{\phi}\left(x_{\kappa}\right) \leq 0, \quad \kappa=1, \ldots, \ell
\end{align*}\right.
$$

To solve it we consider the Lagrangian function:

$$
\begin{equation*}
\mathcal{L}(\hat{w}, \lambda)=\frac{1}{2} w^{2}+\sum_{\kappa=1}^{\ell} \lambda_{\kappa}\left(1-y_{\kappa} \cdot \hat{w}^{\prime} \hat{\phi}\left(x_{\kappa}\right)\right), \quad \text { with } \lambda \geq 0 . \tag{3}
\end{equation*}
$$

MAXIMUM MARGIN PROBLEM

If we impose $\nabla \mathcal{L}(\hat{w}, \lambda)=0$ then we have

$$
\begin{aligned}
& \partial_{w} \mathcal{L}(\hat{w}, \lambda)=w-\sum_{\kappa=1}^{\ell} \lambda_{\kappa} y_{\kappa} \phi\left(x_{\kappa}\right)=0 \\
& \partial_{b} \mathcal{L}(\hat{w}, \lambda)=-\sum_{\kappa=1}^{\ell} \lambda_{\kappa} y_{\kappa}=0 .
\end{aligned}
$$

Now we can re-write the Lagrangian as function of the Lagrangian multiplier only.
From the first equation we obtain $w=\sum_{\kappa=1}^{\ell} \lambda_{\kappa} y_{\kappa} \phi\left(x_{\kappa}\right)$.

MAXIMUM MARGIN PROBLEM

$$
\begin{aligned}
\theta(\lambda)= & \inf _{\hat{w}} \mathcal{L}(\hat{w}, \lambda)=\frac{1}{2}\left(\sum_{h=1}^{\ell} \lambda_{h} y_{h} \phi\left(x_{h}\right)\right)^{\prime} \sum_{\kappa=1}^{\ell} \lambda_{\kappa} y_{\kappa} \phi\left(x_{\kappa}\right) \\
& -\sum_{\kappa=1}^{\ell} \lambda_{\kappa} y_{\kappa}\left(\sum_{h=1}^{\ell}\left(\lambda_{h} y_{h} \phi\left(x_{h}\right)\right)^{\prime} \phi\left(x_{\kappa}\right)+b\right)+\sum_{\kappa=1}^{\ell} \lambda_{\kappa} \\
& =\frac{1}{2} \sum_{h=1}^{\ell} \sum_{\kappa=1}^{\ell} \lambda_{h} \lambda_{\kappa} y_{h} y_{\kappa} \phi\left(x_{h}\right)^{\prime} \phi\left(x_{\kappa}\right) \\
& -\sum_{h=1}^{\ell} \sum_{\kappa=1}^{\ell} \lambda_{h} \lambda_{\kappa} y_{h} y_{\kappa} \phi\left(x_{h}\right)^{\prime} \phi\left(x_{\kappa}\right)-b \sum_{\kappa=1}^{\ell} \lambda_{\kappa} y_{\kappa}+\sum_{\kappa=1}^{\ell} \lambda_{\kappa} \\
& =-\frac{1}{2} \sum_{h=1}^{\ell} \sum_{\kappa=1}^{\ell} \lambda_{h} \lambda_{\kappa} y_{h} y_{\kappa} \phi\left(x_{h}\right)^{\prime} \phi\left(x_{\kappa}\right)+\sum_{\kappa=1}^{\ell} \lambda_{\kappa} .
\end{aligned}
$$

MAXIMUM MARGIN PROBLEM

The maximum margin problem (2) is equivalent to the dual optimization problem:

$$
\left\{\begin{array}{l}
\max \theta(\lambda)=\sum_{\kappa=1}^{\ell} \lambda_{\kappa}-\frac{1}{2} \sum_{h=1}^{\ell} \sum_{\kappa=1}^{\ell} k\left(x_{h}, x_{\kappa}\right) y_{h} y_{\kappa} \cdot \lambda_{h} \lambda_{\kappa} \\
\lambda_{\kappa} \geq 0, \quad \kappa=1, \ldots, \ell \tag{4}\\
\sum_{\kappa=1}^{\ell} \lambda_{\kappa} y_{\kappa}=0
\end{array}\right.
$$

where k is the kernel function:

$$
k: \mathscr{X} \times \mathscr{X} \rightarrow \mathbb{R}: k\left(x_{h}, x_{\kappa}\right):=\phi^{\prime}\left(x_{h}\right) \phi\left(x_{\kappa}\right) .
$$

MAXIMUM MARGIN PROBLEM

The optimal function turns out to be

$$
\begin{array}{r}
f^{\star}(x)=\left(w^{\star}\right)^{\prime} \phi(x)+b^{\star}=\sum_{\kappa=1}^{\ell}\left(\lambda_{\kappa}^{\star} y_{\kappa} \phi\left(x_{\kappa}\right)\right)^{\prime} \phi(x)+b^{\star} \\
=\sum_{\kappa=1}^{\ell} y_{\kappa} \lambda_{\kappa}^{\star} k\left(x_{\kappa}, x\right)+b^{\star} .
\end{array}
$$

If we define $\hat{\lambda}:=\left(\lambda_{1}, \ldots, \lambda_{\ell}, b\right)^{\prime}$ and $k_{i}(x):=k\left(x_{i}, x\right)$ then $f(x)=\hat{\lambda}^{\prime} k(x)$.

- Primal: $f(x)=\hat{w}^{\prime} \hat{\phi}(x)$, parameter \hat{w}.
- Dual: $f(x)=\hat{\lambda}^{\prime} k(x)$, parameter $\hat{\lambda}$.

MAXIMUM MARGIN PROBLEM

From the Karush Kuhn Tucker (KKT) conditions we have

$$
\lambda_{\kappa}^{\star}\left(y_{\kappa} f^{\star}\left(x_{\kappa}\right)-1\right)=0, \quad \kappa=1, \ldots, \ell .
$$

- $\lambda_{\kappa}^{\star}=0$. $\Rightarrow y_{\kappa} f^{\star}\left(x_{\kappa}\right)>1$, and this means that the stationary condition is satisfied with an interior coordinate. x_{κ} is called a straw vector.
- $\lambda_{\kappa}^{\star}>0$. $\Rightarrow y_{\kappa} f^{\star}\left(x_{\kappa}\right)=1$, and this means that the stationary condition is met on the border.
x_{κ} is called a support vector.

MAXIMUM MARGIN PROBLEM

MAXIMUM MARGIN PROBLEM

Dealing with soft-constraints

In the previous margin problem (2) the patterns are assumed to be linearly-separable, but this is a critical assumption.
We relax the constraints: we introduce slack variables ξ_{κ}, $\kappa=1, \ldots, \ell$, one for each example. They are used for tolerating the violation of the constraints as follows

$$
\left\{\begin{array}{l}
y_{\kappa} f\left(x_{\kappa}\right) \geq 1-\xi_{\kappa} \tag{5}\\
\xi_{\kappa} \geq 0
\end{array}\right.
$$

- $\xi_{\kappa}=0 \Rightarrow$ previous MMP formulation.
- $\xi_{\kappa} \in(0,1) \Rightarrow$ the solution is still correct.
- $\xi_{\kappa}=1 \Rightarrow f\left(x_{\kappa}\right)=0$, so we have uncertain decision.
- $\xi_{\kappa}>1 \Rightarrow$ we have the strongest constraint relaxation, that might led to errors.

MAXIMUM MARGIN PROBLEM

The constraints defined by (5) suggest us to define the following optimization problem:

$$
\left\{\begin{array}{l}
\min \frac{1}{2} w^{2}+C \sum_{\kappa=1}^{\ell} \xi_{\kappa} \\
\quad y_{\kappa} f\left(x_{\kappa}\right) \geq 1-\xi_{\kappa} \\
\quad \xi_{\kappa} \geq 0, \quad \kappa=1, \ldots, \ell
\end{array}\right.
$$

MAXIMUM MARGIN PROBLEM

The Lagrangian is
$\mathcal{L}(\hat{w}, \xi, \lambda)=\frac{1}{2} w^{2}+C \sum_{\kappa=1}^{\ell} \xi_{\kappa}-\sum_{\kappa=1}^{\ell}\left(y_{\kappa} f\left(x_{\kappa}\right)-1+\xi_{\kappa}\right) \lambda_{\kappa}-\sum_{\kappa=1}^{\ell} \mu_{\kappa} \xi_{\kappa}$.
If we impose $\nabla \mathcal{L}(\hat{w}, \xi, \lambda)=0$ then we have

$$
\begin{aligned}
\partial_{w} \mathcal{L}=0 & \Rightarrow w-\sum_{\kappa=1}^{\ell} \lambda_{\kappa} y_{\kappa} \phi\left(x_{\kappa}\right)=0 \\
\partial_{b} \mathcal{L}=0 & \Rightarrow \sum_{\kappa=1}^{\ell} \lambda_{\kappa} y_{\kappa}=0 \\
\partial_{\xi_{\kappa}} \mathcal{L}=0 & \Rightarrow C-\lambda_{\kappa}-\mu_{\kappa}=0
\end{aligned}
$$

MAXIMUM MARGIN PROBLEM

Now, the last condition make it possible to re-write the Lagrangian as

$$
\begin{aligned}
\mathcal{L}(\hat{w}, \xi, \lambda, \mu) & =\frac{1}{2} w^{2}-\sum_{\kappa=1}^{\ell} \lambda_{\kappa}\left(y_{\kappa} \hat{w}^{\prime} \hat{\phi}\left(x_{\kappa}\right)-1\right)+\sum_{\kappa=1}^{\ell}\left(C-\lambda_{\kappa}-\mu_{\kappa}\right) \xi_{\kappa} \\
& =\frac{1}{2} w^{2}-\sum_{\kappa=1}^{\ell} \lambda_{\kappa}\left(y_{\kappa} \hat{w}^{\prime} \hat{\phi}\left(x_{\kappa}\right)-1\right)
\end{aligned}
$$

It is the same Lagrangian as the one of the primal formulation of MMP in case of hard constraints (3).

MAXIMUM MARGIN PROBLEM

If we replace \hat{w} into $\mathcal{L}(\hat{w}, \xi, \lambda)$, we obtain the dual problem:

$$
\left\{\begin{array}{l}
\max \sum_{\kappa=1}^{\ell} \lambda_{\kappa}-\frac{1}{2} \sum_{h=1}^{\ell} \sum_{\kappa=1}^{\ell} \lambda_{h} \lambda_{\kappa} y_{h} y_{\kappa} k\left(x_{h}, x_{\kappa}\right) \\
0 \leq \lambda_{\kappa} \leq C, \quad \kappa=1, \ldots, \ell \\
\\
\sum_{\kappa=1}^{\ell} \lambda_{\kappa} y_{\kappa}=0
\end{array}\right.
$$

As $C \rightarrow \infty$ this soft-constrains problem is turned into the correspondent hard formulation (4).

MAXIMUM MARGIN PROBLEM

Regression

We have pairs $\left(x_{\kappa}, y_{\kappa}\right)$ where $y_{\kappa} \in \mathbb{R}$.
Let $\epsilon>0$ be and consider the constraint $\left|y_{\kappa}-f\left(x_{\kappa}\right)\right| \leq \epsilon$. Like for classification, we can introduce slack variables.

We formulate the regression problem as

$$
\left\{\begin{aligned}
\min & \frac{1}{2} w^{2}+C \sum_{\kappa=1}^{\ell}\left(\xi_{\kappa}^{-}+\xi_{\kappa}^{+}\right) \\
& {\left[y_{\kappa}-f\left(x_{\kappa}\right) \geq 0\right]\left(y_{\kappa}-f\left(x_{\kappa}\right) \leq \epsilon+\xi_{\kappa}^{+}\right) } \\
& \quad+\left[f\left(x_{\kappa}\right)-y_{\kappa}<0\right]\left(f\left(x_{\kappa}\right)-y_{\kappa} \leq \epsilon+\xi_{\kappa}^{-}\right) \\
& \xi_{\kappa}^{+} \geq 0, \quad \xi_{\kappa}^{-} \geq 0
\end{aligned}\right.
$$

MAXIMUM MARGIN PROBLEM

The Lagrangian is

$$
\begin{aligned}
\mathcal{L}= & \frac{1}{2} w^{2}+C \sum_{\kappa=1}^{\ell}\left(\xi_{\kappa}^{-}+\xi_{\kappa}^{+}\right)+\sum_{\kappa=1}^{\ell} \lambda_{\kappa}^{+}\left(y_{\kappa}-\hat{w}^{\prime} \hat{\phi}\left(x_{\kappa}\right)-\epsilon-\xi_{\kappa}^{+}\right) \\
& +\sum_{\kappa=1}^{\ell} \lambda_{\kappa}^{-}\left(\hat{w}^{\prime} \hat{\phi}\left(x_{\kappa}\right)-y_{\kappa}-\epsilon-\xi_{\kappa}^{-}\right)-\sum_{\kappa=1}^{\ell} \mu_{\kappa}^{+} \xi_{\kappa}^{+}-\sum_{\kappa=1}^{\ell} \mu_{\kappa}^{-} \xi_{\kappa}^{-}
\end{aligned}
$$

In order to pass to the dual space we determine the critical points

$$
\begin{aligned}
& \partial_{w} \mathcal{L}=0 \Rightarrow w-\sum_{\kappa=1}^{\ell}\left(\lambda_{\kappa}^{+}-\lambda_{\kappa}^{-}\right) \hat{\phi}\left(x_{\kappa}\right)=0 \\
& \partial_{b} \mathcal{L}=0 \Rightarrow \sum_{\kappa=1}^{\ell}\left(\lambda_{\kappa}^{+}-\lambda_{\kappa}^{-}\right)=0 \\
& \partial_{\xi_{\kappa}^{+}} \mathcal{L}=0 \Rightarrow C-\lambda_{\kappa}^{+}-\mu_{\kappa}^{+}=0 \\
& \partial_{\xi_{\kappa}^{-}} \mathcal{L}=0 \Rightarrow C-\lambda_{\kappa}^{-}-\mu_{\kappa}^{-}=0 .
\end{aligned}
$$

MAXIMUM MARGIN PROBLEM

We obtain the following dual problem

$$
\left\{\begin{array}{l}
\max \theta\left(\lambda^{+}, \lambda^{-}\right)=-\frac{1}{2} \sum_{h=1}^{\ell} \sum_{\kappa=1}^{\ell}\left(\lambda_{h}^{+}-\lambda_{h}^{-}\right)\left(\lambda_{\kappa}^{+}-\lambda_{\kappa}^{-}\right) k\left(x_{h}, x_{\kappa}\right) \\
\quad-\epsilon \sum_{\kappa=1}^{\ell}\left(\lambda_{\kappa}^{+}+\lambda_{\kappa}^{-}\right)+\sum_{\kappa=1}^{\ell} y_{\kappa}\left(\lambda_{\kappa}^{+}-\lambda_{\kappa}^{-}\right) \\
\quad \sum_{\kappa=1}^{\ell} \lambda_{\kappa}^{+}=\sum_{\kappa=1}^{\ell} \lambda_{\kappa}^{-} \\
0 \leq \lambda_{\kappa}^{+} \leq C \\
0 \leq \lambda_{\kappa}^{-} \leq C
\end{array}\right.
$$

where $k\left(x_{h}, x_{\kappa}\right)=\left\langle\hat{\phi}\left(x_{h}\right), \hat{\phi}\left(x_{\kappa}\right)\right\rangle$.

KERNEL FUNCTIONS

We have already seen the definition of kernel:

$$
k: \mathscr{X} \times \mathscr{X} \rightarrow \mathbb{R}
$$

$$
k(x, z)=\langle\phi(x), \phi(z)\rangle=\phi^{\prime}(x) \phi(z)
$$

Kernel trick: kernel functions return a similarity measure between any two points in the input space which is based on their mapping to the feature space, without its direct involvement in the computation.

KERNEL FUNCTIONS

Example

We have $\mathscr{X}=\mathbb{R}^{2}, \mathscr{H}=\mathbb{R}^{3}$ and

$$
\begin{aligned}
& \binom{x_{1}}{x_{2}} \xrightarrow{\phi}\left(\begin{array}{c}
x_{1}^{2} \\
\sqrt{2} x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right) . \\
k\left(x_{h}, x_{\kappa}\right)= & \left(x_{h 1}^{2}, \sqrt{2} x_{h 1} x_{h 2}, x_{h 2}^{2}\right) \cdot\left(\begin{array}{c}
x_{\kappa 1}^{2} \\
\sqrt{2} x_{\kappa 1} x_{\kappa 2} \\
x_{\kappa 2}^{2}
\end{array}\right) \\
= & x_{h 1}^{2} x_{\kappa 1}^{2}+2 x_{h 1} x_{h 2} x_{\kappa 1} x_{\kappa 2}+x_{h, 2}^{2} x_{\kappa, 2}^{2} \\
= & \left(x_{h 1} x_{\kappa 1}+x_{h 2} x_{\kappa 2}\right)^{2} \\
= & \left\langle x_{h}, x_{k}\right\rangle^{2} .
\end{aligned}
$$

KERNEL FUNCTIONS

Now we define Gram matrix

$$
K\left(\mathscr{X}_{\ell}^{\sharp}\right)=\left(\begin{array}{ccc}
k\left(x_{1}, x_{1}\right), & \ldots & k\left(x_{1}, x_{\ell}\right) \tag{6}\\
\vdots & & \vdots \\
k\left(x_{\ell}, x_{1}\right), & \ldots & k\left(x_{\ell}, x_{\ell}\right)
\end{array}\right) \in \mathbb{R}^{\ell, \ell}
$$

which is a structured organization of the image of k over a sampling $\mathscr{X}_{\ell}^{\sharp}=\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}$ of \mathscr{X}. It allows us to replace functional analysis on the kernel with linear algebra on the associated Gram matrix.
$K\left(\mathscr{X}_{\ell}^{\sharp}\right) \geq 0 \quad \forall \mathscr{X}_{\ell}^{\sharp}$ (i.e. is a non-negative matrix $) \Leftrightarrow k$ is a kernel

KERNEL FUNCTIONS

Infinite dimensional feature spaces

As $D \rightarrow \infty$ the feature vector is

$$
\phi(x)=\left(\phi_{1}(x), \phi_{2}(x), \ldots\right)^{\prime} \in \mathbb{R}^{\infty} .
$$

We introduce the functional operator

$$
\mathcal{T}_{k} u(x)=\int_{\mathscr{X}} k(x, z) u(z) d z
$$

which replaces the Gram matrix at finite dimension.

$$
\mathcal{T}_{k} \geq 0 \Leftrightarrow k \text { is a kernel }
$$

KERNEL FUNCTIONS

Types of kernels

- Linear kernels: $k(x, z)=x^{\prime} z(\phi=i d)$
- Polynomial kernels: $k(x, z)=\left(x^{\prime} z\right)^{p}$ Let be $x, z \in \mathbb{R}^{d}$.

$$
\begin{aligned}
\langle x, z\rangle^{p} & =\left(\sum_{i=1}^{d} x_{i} z_{i}\right)^{p}=\sum_{|\alpha|=p} \frac{p!}{\alpha!}(x \circ z)^{\alpha}=\sum_{|\alpha|=p} \frac{p!}{\alpha!} \prod_{i=1}^{d}\left(x_{i} z_{i}\right)^{\alpha_{i}} \\
& =\sum_{|\alpha|=p}\left(\frac{p!}{\alpha!}\right)^{1 / 2} \prod_{i=1}^{d}\left(x_{i}\right)^{\alpha_{i}} \cdot\left(\frac{p!}{\alpha!}\right)^{1 / 2} \prod_{i=1}^{d}\left(z_{i}\right)^{\alpha_{i}} \\
& =\left\langle\left(\frac{p!}{\alpha!}\right)^{1 / 2} \prod_{i=1}^{d}\left(x_{i}\right)^{\alpha_{i}},\left(\frac{p!}{\alpha!}\right)^{1 / 2} \prod_{i=1}^{d}\left(z_{i}\right)^{\alpha_{i}}\right\rangle_{|\alpha|=p}
\end{aligned}
$$

The feature vector is $\phi(u)=\left(\frac{p!}{\alpha!}\right)^{1 / 2} \prod_{i=1}^{d}\left(u_{i}\right)^{\alpha_{i}}$. $\left(\alpha=\left[\alpha_{1}, \ldots, \alpha_{d}\right],|\alpha|=\alpha_{1}+\ldots+\alpha_{d}, \alpha!=\alpha_{1}!\ldots \alpha_{d}!\right.$, $\left.x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{d}^{\alpha_{d}}\right)$

KERNEL FUNCTIONS

Types of kernels

- Gaussian kernel: $k(x, z)=e^{-\frac{\|x-z\|^{2}}{2 \sigma^{2}}}$

Only infinite-dimensional feature representations are known. We propose one of those representations by using Taylor's expansion in the case of $\mathscr{X}=\mathbb{R}$. We have
$e^{-\gamma(x-z)^{2}}=e^{-\gamma x^{2}+2 \gamma x z-\gamma z^{2}}=$
$e^{-\gamma x^{2}-\gamma z^{2}}\left(1+\frac{2 \gamma \times z}{1!}+\frac{(2 \gamma x z)^{2}}{2!}+\ldots\right)=$
$e^{-\gamma x^{2}-\gamma z^{2}}\left(1 \cdot 1+\frac{\sqrt{2 \gamma}}{1!} x \cdot \frac{\sqrt{2 \gamma}}{1!} z+\sqrt{\frac{(2 \gamma)^{2}}{2!}} x^{2} \cdot \sqrt{\frac{(2 \gamma)^{2}}{2!}} z^{2}+\ldots\right)$.
The feature map is

$$
\phi(y)=e^{-\gamma y^{2}}\left(1, \sqrt{\frac{2 \gamma}{1!}} y, \sqrt{\frac{(2 \gamma)^{2}}{2!}} y^{2}, \ldots \sqrt{\frac{(2 \gamma)^{i}}{i!}} y^{i}, \ldots\right)^{\prime} .
$$

KERNEL FUNCTIONS

Types of kernels

- Dot product kernels: $k(x, z)=K(\langle x, z\rangle)$. Linear and polynomial kernels are dot product kernels.
- Translation invariance kernels: $k(x, z)=K(x-z)$.

Gaussian kernels are translation invariance kernels.

- Radial kernel: $k(x, z)=K(\|x-z\|)$.
- B_{n}-splines kernels: $k(x, z)=B_{2 p+1}(\|x-z\|)$,
where $B_{n}(u):=\bigotimes_{i=1}^{n}\left[|u| \leq \frac{1}{2}\right]$ and $\bigotimes_{i=1}^{n}$ is the n-fold convolution of the characteristic function of the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$, and $\otimes_{i=1}^{0}\left[|u| \leq \frac{1}{2}\right]:=\left[|u| \leq \frac{1}{2}\right]$.
B_{n}-splines kernels are an example of translational invariance kernels. B_{n}-splines kernels approximate Gaussian kernels as $n \rightarrow \infty$.

KERNEL FUNCTIONS

Kernel properties

Given $\alpha \in \mathbb{R}$, any two kernels k_{1}, k_{2}, and $f: \mathscr{X} \rightarrow \mathbb{R}$ then

- $k(x, z)=k_{1}(x, z)+k_{2}(x, z)$
- $k(x, z)=\alpha k_{1}(x, z)$
- $k(x, z)=k_{1}(x, z) \cdot k_{2}(x, z)$
- $k(x, z)=f(x) f(z)$

