
Coarse-to-Fine Q-Learning for

Object Localisation on VHR Images

Dario Zanca and Mason McGill

Feb-Apr 2018

1 Introduction

General motivations and short problem description go here.

Literature review goes here. [6] [3] [1] [2] [5]

In this work we define a coarse-to-fine learning method for fast localization
of objects of interest (OOIs) in very high resolution (VHR) images. We learn
latent policies in a hierarchy defined by the possible scales (from coarse to fine)
at which input can be sampled, to process with high-resolution only certain
parts of the input that are good candidates for containing the OOI.

2 Problem definition

2.1 Environment

Given a map
M : R2 → Rn

of pixels, we can make queries

q(x, y, z) = [image]

which output a crop of the map of fixed resolution n× n, centered in a certain
position (x, y) and zoom z1.

2.2 Task

We want to localise all the instances of an object of interest (OOI) in M.

1In particular, the number z allows us to compute the area corresponding to a single pixel
at that zoom level as

A0

4zn2
,

where A0 is the are of [image] at z = 0.

1

2.3 Assumptions

Assumptions about the environment:

• The set of possible zooms is discrete, i.e. Z := {z1, ..., zk}, where z1
provides the coarser scale and zk the finest.

• Assuming the fixed resolution n× n, a query at zoom zi samples from an
area four times bigger then zi+1.

Assumptions about the problem:

• OOI are visible only at the finest scale that correspond to zk; a model O
for OOI is given (pre-trained).

• M is a very high resolution (VHR) image.

• Sensing costs a lot. We want to minimize the number of queries performed.
On the other hand, we assume cheap processing and infinite memory.

• OOI are sparsely distributed onM; a linear search is not convenient. This
implies that there exists at least one zoom level before the finest, in which
feature observable at that level are correlated with the presence of OOI.

3 Solution 1: Where to look

3.1 Model

We want to determine the value function

fπ(s, a),

that defines the expected return starting from a state s = [image], taking the
action a, and thereafter following the policy π. The action a indicates the
position (u, v) and the zoom z at which make the next query,

a = (u, v, z).

More precisely, and omitting the dependence on π,

f(s, a) = E
[
r + γmax

a′
f(s′, a′)|s, a

]
,

where r is a reward signal related with the correct localization of non-observed
OOIs. In other words, f is a function that quantifies, given the current obser-
vation s, where to look next in order to maximize the value.

Losing generality for the sake of simplicity, we assume that decisions at each
level of zoom zi are independent. Given the set of function

{f1, ..., fk−1} ∪ {fk ≡ 0}

2

we define f by cases

f(s, a) =
{
fi(s, ai), if z = zi,

and fi indicates where to look next with a finer level of zoom zi+1. Moreover,
we limit the possible next locations (u, v) in a sparse grid. So that, ai is chosen
from a small set A, with |A| = m×m << n× n, that depends on the previous
observation,

ai ∈ A = {...}2.

3.2 Inference

At each step, we select a location for each zoom level, from the coarsest to the
finest. We compute a fixed saccade activation path

a = (a1, a2, ..., ak−1),

where,
ai = arg max fi(si, ·)

and, if (uo, v0) are the origin’s coordinates,

si = q(ui−1, vi−1, zi).

This path uniquely determines a final patch

q(uk−1, vk−1, zk) ⊂M

sampled at the finest scale, where the model O of the object is defined.
Since we are interested in the localisation of non-already-explored OOIs, we

add the extra channel V in input that keeps memory of the locations already
visited, so that,

fi : Rn2×m2×2 → R.

3.3 Training

Since the query-function q(·) is not differentiable, we train the model with rein-
force. The environmental action would correspond to the localisation decision,
and the reward would reflect if the decision is correct.

The reward signal is defined as follow,

r(ai) =

{
0, i < k − 1

O(sk), i = k − 1

2Set A is chosen such that by making queries at each possible next location in the successive
zoom level produce a tessellation of the current state.

3

where we assume the object model O(·) outputs 1 if the OOI is present in the
analyzed patch and 0 otherwise3.
Then,

fi(si, ai) = E

[
r(ai) + γmax

ai+1

fi+1(si+1, ai+1)|si, ai
]
,

Notice that, when choosing γ = 1 and not giving any intermediate reward, the
problem strictly simplifies to the one of learning k − 1 myopic agents.

We then treat the right-hand side quantity into brackets as target and min-
imize the MSE function

L =

k−1∑
i=1

r(ai) + γmax
ai+1

fi+1(si+1, ai+1)︸ ︷︷ ︸−fi(si, ai)
2

.

3.4 Experiments

In order to produce an experimental verification of the model, we create environ-
ments compatible with the assumptions made in the previous sections. Different
functions are learned at each zoom level. This results in a hierarchical organi-
zation that efficiently locates OOIs on the given map. Performance is evaluated
in terms of total reward.

3.4.1 Toy example

Environment. A synthetic environment is defined in which OOIs are zero
digits from the Mnist dataset [4], while other digits from the same dataset are
used as distractors. MapM, in which digits are distributed, has a much higher
resolution (≥ 28 times) than OOIs. Queries return a fixed resolution patch,
28-by-28. In the first zoom levels, no digits are recognizable. For this reason,
environment is generated such that the zeroes distribution creates a pattern
that can be observed even at the first zoom level. In particular, the zeros are
distributed around an empty square area. An example of this environment is
shown in fig. 2. After training for 5000 episodes, value function indicate at each
level which tiles guarantee a higher reward. An example is shown in Fig. ??.

Experimental setup: fixed budget of queries. At each iteration, an ac-
tivation path through the zoom layers selects a tile in the finest layer. Each
observation has a fixed quieries cost, equal to the number of layers4. A fixed
budget of nq queries is given for each map. In our experiments we set nq = 10.
This correspond to considering an episodic setting of fixed length. Reward is 1
when selecting tiles containing unobserved OOIs, and it is 0 otherwise.

3Analogously, we can assume the object model O(·) outputs the number of OOIs in the
analyzed patch

4Depending on memory resources, this process would benefit from storing already-
requested-patches.

4

(a) Map M (b) Labels

Figure 1: Example of environment with ten OOIs distributed close to empty square
area.

(a) f1 (b) f2

Figure 2: Example of value functions f1 and f2 after 5000 episodes of training.

Experiment results. Performance during training are shown in Fig. 3. The
total reward is computed by summing up rewards for each action in during the
nq queries exploration. The behavior of the learned functions is illustrated in
Fig. 4, 5 and 6, among different stages in training. From the examples, it is clear
that reward is not equal to the number of localized OOIs. It might be the case
that more instances of the OOI are present in a single tile, or that two or more
tiles contain only a part of the same OOI but providing then more rewards. In
the case of a more specific task (like counting the instances or marking the exact
middle point of every OOI) further processing is required.

5

0 1000 2000 3000 4000 5000
Episodes

1

2

3

4

5

6

7
To

ta
lR

ew
ar

d
Learned Policy
Random Policy

Figure 3: Total reward during training. For each episode, a new environment is
generated.

3.4.2 Localise swimming pools in Los Angeles

Environment. In the setup offered by the Google maps APIs 5, we consider
the problem of locating swimming pools on satellite maps. The pools are only
recognizable from a certain level of zoom onwards. However, policies can be
learned at the earliest zoom levels to increase the likelihood of locating a swim-
ming pool. For example, swimming pools are unlikely to be found in the middle
of the ocean or in the city centre, while in residential areas with trees on the
edge of the city they become increasingly easy to find.

Preliminary analysis. A pre-trained model of swimming pool is needed in
order to evaluate performance of the defined scheme in this task.

References

[1] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical
reinforcement learning. Discrete Event Dynamic Systems, 13(4):341–379,
2003.

5https://cloud.google.com/maps-platform/

6

(a) Step 1 (b) Step 3

(c) Step 7 (d) Step 10

Figure 4: After 1000 episodes of training. Zeros are slightly highlighted for
visualization purposes only. The light blue boxes mark the tiles selected until each
step.

[2] X. Chen, S. Xiang, C. L. Liu, and C. H. Pan. Vehicle detection in satellite
images by hybrid deep convolutional neural networks. IEEE Geoscience and
Remote Sensing Letters, 11(10):1797–1801, Oct 2014.

[3] Thomas G Dietterich. The maxq method for hierarchical reinforcement
learning. In ICML, volume 98, pages 118–126. Citeseer, 1998.

[4] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[5] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv:1409.1556, 2003.

[6] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. In Proceedings of the 2001 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition. CVPR 2001, volume 1,
pages I–511–I–518 vol.1, 2001.

7

(a) Step 1 (b) Step 3

(c) Step 7 (d) Step 10

Figure 5: After 3000 episodes of training. Zeros are slightly highlighted for
visualization purposes only. The light blue boxes mark the tiles selected until each
step.

8

(a) Step 1 (b) Step 3

(c) Step 7 (d) Step 10

Figure 6: After 5000 episodes of training. Zeros are slightly highlighted for
visualization purposes only. The light blue boxes mark the tiles selected until each
step.

9

