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CHAPTER

The Big Picture

Let’s start!
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1.1 Why Do Machines Need to Learn? 3

This chapter gives a big picture of the book. Its reading offers an overall view of
the current machine learning challenges, after having discussed principles and their
concrete application to real-world problems. The chapter introduces the intriguing
topic of induction, by showing its puzzling nature, as well as its necessity in any task
which involves perceptual information.

1.1 WHY DO MACHINES NEED TO LEARN?
Why The metalevel of

machine learning.
do machines need to learn? Don’t they just run the program, which simply

solves a given problem? Aren’t programs only the fruit of human creativity, so as
machines simply execute them efficiently? No one should start reading a machine
learning book without having answered these questions. Interestingly, we can easily
see that the classic way of thinking about computer programming as algorithms to
express, by linguistic statements, our own solutions isn’t adequate to face many chal-
lenging real-world problems. We do need to introduce a metalevel, where, more than
formalizing our own solutions by programs, we conceive algorithms whose purpose
becomes that of describing how machines learn to execute the task.

As an example let us consider the case of handwritten character
recognition. Handwritten

characters: The 2d

warning!

To make things easy, we assume that an intelligent agent is
expected to recognize chars that are generated using black and white
pixels only — as it is shown in the figure. We will show that also
this dramatic simplification doesn’t reduce significantly the difficulty
of facing this problem by algorithms based on our own understanding of regularities.
One early realizes that human-based decision processes are very difficult to encode
into precise algorithmic formulations. How can we provide a formal description of
character “2”? The instance of the above picture suggests how tentative algorithmic
descriptions of the class can become brittle. A possible way of getting rid of this
difficulty is to try a brute force approach, where all possible pictures on the retina
with the chosen resolution are stored in a table, along with the corresponding class
code. The above 8 × 8 resolution char is converted into a Boolean string of 64 bits by
scanning the picture by rows:

∼ 0001100000100100000000100000001000000010100001000111110000000011.

(1.1.1)

Of course, we can construct tables with similar strings, along with the associated
class code. In so doing, handwritten char recognition would simply be reduced to
the problem of searching a table. Char recognition

by searching a
table.

Unfortunately, we are in front of a table with
264 = 18446744073709551616 items, and each of them will occupy 8 bytes, for
a total of approximately 147 quintillion (1018) bytes, which makes totally unreason-
able the adoption of such a plain solution. Even a resolution as small as 5×6 requires
storing 1 billion records, but just the increment to 6 × 7 would require storing about
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of facing this problem by algorithms based on our own understanding of regularities.
One early realizes that human-based decision processes are very difficult to encode
into precise algorithmic formulations. How can we provide a formal description of
character “2”? The instance of the above picture suggests how tentative algorithmic
descriptions of the class can become brittle. A possible way of getting rid of this
difficulty is to try a brute force approach, where all possible pictures on the retina
with the chosen resolution are stored in a table, along with the corresponding class
code. The above 8 × 8 resolution char is converted into a Boolean string of 64 bits by
scanning the picture by rows:

∼ 0001100000100100000000100000001000000010100001000111110000000011.

(1.1.1)

Of course, we can construct tables with similar strings, along with the associated
class code. In so doing, handwritten char recognition would simply be reduced to
the problem of searching a table. Char recognition

by searching a
table.

Unfortunately, we are in front of a table with
264 = 18446744073709551616 items, and each of them will occupy 8 bytes, for
a total of approximately 147 quintillion (1018) bytes, which makes totally unreason-
able the adoption of such a plain solution. Even a resolution as small as 5×6 requires
storing 1 billion records, but just the increment to 6 × 7 would require storing about
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4 trillion records! For all of them, the programmer would be expected to be patient
enough to complete the table with the associated class code. This simple example is
a sort of 2d warning message: As d grows towards values that are ordinarily used
for the retina resolution, the space of the table becomes prohibitive. There is more
– we have made the tacit assumption that the characters are provided by a reliable
segmentation program, which extracts them properly from a given form. While this
might be reasonable in simple contexts, in others segmenting the characters might
be as difficult as recognizing them.Segmentation might

be as difficult as
recognition!

In vision and speech perception, nature seems
to have fun in making segmentation hard. For example, the word segmentation of
speech utterances cannot rely on thresholding analyses to identify low levels of the
signal. Unfortunately, those analyses are doomed to fail. The sentence “computers
are attacking the secret of intelligence”, quickly pronounced, would likely
be segmented as

com / pu / tersarea / tta / ckingthesecre / tofin / telligence.

The signal is nearly null before the explosion of voiceless plosives p, t, k, whereas,
because of phoneme coarticulation, no level-based separation between contiguous
words is reliable. Something similar happens in vision. Overall, it looks like seg-
mentation is a truly cognitive process that in most interesting tasks does require
understanding the information source.

1.1.1 LEARNING TASKS
IntelligentAgent: χ : E → D . agents interact with the environment, from which they are expected to
learn, with the purpose of solving assigned tasks. In many interesting real-world prob-
lems we can make the reasonable assumption that the intelligent agent interacts with
the environment by distinct segmented elements e ∈ E of the learning environment,
on which it is expected to take a decision. Basically, we assume somebody else has
already faced and solved the segmentation problem, and that the agent only processes
single elements from the environment. Hence, the agent can be regarded as a func-
tion χ : E → O , where the decision result is an element of O . For example, when
performing optical character recognition in plain text, the character segmentation can
take place by algorithms that must locate the row/column transition from the text to
background. This is quite simple, unless the level of noise in the image document is
pretty high.

χ = h ◦ f ◦ π ,
where π is the input

encoding, f is the
learning function,

and h is the output
encoding.

In general, the agent requires an opportune internal representation of elements
in E and O , so that we can think of χ as the composition χ = h ◦ f ◦ π . Here
π : E → X is a preprocessing map that associates every element of the environment
e with a point x = π(e) in the input space X , f : X → Y is the function that takes
the decision y = f (x) on x, while h : Y → O maps y onto the output o = h(y).
In the above handwritten character recognition task we assume that we are given a
low resolution camera so that the picture can be regarded as a point in the environ-
ment space E . This element can be represented — as suggested by Eq. (1.1.1) — as
elements of a 64-dimensional Boolean hypercube (i.e., X ⊂ R64). Basically, in this
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case π is simply mapping the Boolean matrix to a Boolean vector by row scanning in
such a way that there is no information loss when passing from e to x. As it will be
shown later, on the other hand, the preprocessing function π typically returns a pat-
tern representation with information loss with respect to the original environmental
representation e ∈ E . Function f maps this representation onto the one-hot encoding
of number 2 and, finally, h transforms this code onto a representation of the same
number that is more suitable for the task at hand:

π−→ (0, 0, 0, 1, 1, 0, 0, 0, . . . , 0, 0, 0, 0, 0, 0, 1, 1)′

f−→ (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)′
h−→ 2.

Overall the action of χ can be nicely written as χ( ) = 2. In many learning ma-
chines, the output encoding function h plays a more important role, which consists
of converting real-valued representations y = f (x) ∈ R10 onto the corresponding
one-hot representation. For example, in this case, one could simply choose h such
that hi(y) = δ(i,arg max κy), where δ denotes the Kronecher’s delta. In doing so, the
hot bit is located at the same position as the maximum of y. While this apparently
makes sense, a more careful analysis suggests that such an encoding suffers from a
problem that is pointed out in Exercise 2.

Functions π(·) and h(·) adapt the environmental information and the decision
to the internal representation of the agent. As it will be seen throughout the book,
depending on the task, E and O can be highly structured, and their internal represen-
tation plays a crucial role in the learning process. The specific role of π(·) is to encode
the environmental information into an appropriate internal representation. Likewise,
function h(·) is expected to return the decision on the environment on the basis of the
internal state of the machine. The core of learning is the appropriate discovering of
f (·), so as to obey the constraints dictated by the environment.

What are the environmental conditions that are dictated by the environment?
Learning from
examples.

Since the dawn of machine learning, scientists have mostly been following the princi-
ple of learning from examples. Under this framework, an intelligent agent is expected
to acquire concepts by induction on the basis of collections L = {(eκ , oκ ), κ =
1, . . . , ℓ)}, where an oracle, typically referred to as the supervisor, pairs inputs
eκ ∈ E with decision values oκ ∈ O . A first important distinction concerns clas-
sification and regression tasks. In the first case, the decision requires the finiteness of
O , while in the second case O can be thought of as a continuous set.

Classification and
regression.

First, let us focus on classification. In simplest cases, O ⊂ N is a collection
of integers that identify the class of e. For example, in the handwritten character
recognition problem, restricted to digits, we might have |O| = 10. In this case, we can
promptly see the importance of distinguishing the physical, the environmental, and
the decision information with respect to their corresponding internal representation
of the machine. At the pure physical level, handwritten chars are the outcome of
the physical process of light reflection. It can be captured as soon as we define the
retina R as a rectangle of R2, and interpret the reflected light by the image function
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tion χ : E → O , where the decision result is an element of O . For example, when
performing optical character recognition in plain text, the character segmentation can
take place by algorithms that must locate the row/column transition from the text to
background. This is quite simple, unless the level of noise in the image document is
pretty high.
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In general, the agent requires an opportune internal representation of elements
in E and O , so that we can think of χ as the composition χ = h ◦ f ◦ π . Here
π : E → X is a preprocessing map that associates every element of the environment
e with a point x = π(e) in the input space X , f : X → Y is the function that takes
the decision y = f (x) on x, while h : Y → O maps y onto the output o = h(y).
In the above handwritten character recognition task we assume that we are given a
low resolution camera so that the picture can be regarded as a point in the environ-
ment space E . This element can be represented — as suggested by Eq. (1.1.1) — as
elements of a 64-dimensional Boolean hypercube (i.e., X ⊂ R64). Basically, in this

1.1 Why Do Machines Need to Learn? 5

case π is simply mapping the Boolean matrix to a Boolean vector by row scanning in
such a way that there is no information loss when passing from e to x. As it will be
shown later, on the other hand, the preprocessing function π typically returns a pat-
tern representation with information loss with respect to the original environmental
representation e ∈ E . Function f maps this representation onto the one-hot encoding
of number 2 and, finally, h transforms this code onto a representation of the same
number that is more suitable for the task at hand:

π−→ (0, 0, 0, 1, 1, 0, 0, 0, . . . , 0, 0, 0, 0, 0, 0, 1, 1)′

f−→ (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)′
h−→ 2.

Overall the action of χ can be nicely written as χ( ) = 2. In many learning ma-
chines, the output encoding function h plays a more important role, which consists
of converting real-valued representations y = f (x) ∈ R10 onto the corresponding
one-hot representation. For example, in this case, one could simply choose h such
that hi(y) = δ(i,arg max κy), where δ denotes the Kronecher’s delta. In doing so, the
hot bit is located at the same position as the maximum of y. While this apparently
makes sense, a more careful analysis suggests that such an encoding suffers from a
problem that is pointed out in Exercise 2.

Functions π(·) and h(·) adapt the environmental information and the decision
to the internal representation of the agent. As it will be seen throughout the book,
depending on the task, E and O can be highly structured, and their internal represen-
tation plays a crucial role in the learning process. The specific role of π(·) is to encode
the environmental information into an appropriate internal representation. Likewise,
function h(·) is expected to return the decision on the environment on the basis of the
internal state of the machine. The core of learning is the appropriate discovering of
f (·), so as to obey the constraints dictated by the environment.

What are the environmental conditions that are dictated by the environment?
Learning from
examples.

Since the dawn of machine learning, scientists have mostly been following the princi-
ple of learning from examples. Under this framework, an intelligent agent is expected
to acquire concepts by induction on the basis of collections L = {(eκ , oκ ), κ =
1, . . . , ℓ)}, where an oracle, typically referred to as the supervisor, pairs inputs
eκ ∈ E with decision values oκ ∈ O . A first important distinction concerns clas-
sification and regression tasks. In the first case, the decision requires the finiteness of
O , while in the second case O can be thought of as a continuous set.

Classification and
regression.

First, let us focus on classification. In simplest cases, O ⊂ N is a collection
of integers that identify the class of e. For example, in the handwritten character
recognition problem, restricted to digits, we might have |O| = 10. In this case, we can
promptly see the importance of distinguishing the physical, the environmental, and
the decision information with respect to their corresponding internal representation
of the machine. At the pure physical level, handwritten chars are the outcome of
the physical process of light reflection. It can be captured as soon as we define the
retina R as a rectangle of R2, and interpret the reflected light by the image function

1.1 Why Do Machines Need to Learn? 5

case π is simply mapping the Boolean matrix to a Boolean vector by row scanning in
such a way that there is no information loss when passing from e to x. As it will be
shown later, on the other hand, the preprocessing function π typically returns a pat-
tern representation with information loss with respect to the original environmental
representation e ∈ E . Function f maps this representation onto the one-hot encoding
of number 2 and, finally, h transforms this code onto a representation of the same
number that is more suitable for the task at hand:

π−→ (0, 0, 0, 1, 1, 0, 0, 0, . . . , 0, 0, 0, 0, 0, 0, 1, 1)′

f−→ (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)′
h−→ 2.

Overall the action of χ can be nicely written as χ( ) = 2. In many learning ma-
chines, the output encoding function h plays a more important role, which consists
of converting real-valued representations y = f (x) ∈ R10 onto the corresponding
one-hot representation. For example, in this case, one could simply choose h such
that hi(y) = δ(i,arg max κy), where δ denotes the Kronecher’s delta. In doing so, the
hot bit is located at the same position as the maximum of y. While this apparently
makes sense, a more careful analysis suggests that such an encoding suffers from a
problem that is pointed out in Exercise 2.

Functions π(·) and h(·) adapt the environmental information and the decision
to the internal representation of the agent. As it will be seen throughout the book,
depending on the task, E and O can be highly structured, and their internal represen-
tation plays a crucial role in the learning process. The specific role of π(·) is to encode
the environmental information into an appropriate internal representation. Likewise,
function h(·) is expected to return the decision on the environment on the basis of the
internal state of the machine. The core of learning is the appropriate discovering of
f (·), so as to obey the constraints dictated by the environment.

What are the environmental conditions that are dictated by the environment?
Learning from
examples.

Since the dawn of machine learning, scientists have mostly been following the princi-
ple of learning from examples. Under this framework, an intelligent agent is expected
to acquire concepts by induction on the basis of collections L = {(eκ , oκ ), κ =
1, . . . , ℓ)}, where an oracle, typically referred to as the supervisor, pairs inputs
eκ ∈ E with decision values oκ ∈ O . A first important distinction concerns clas-
sification and regression tasks. In the first case, the decision requires the finiteness of
O , while in the second case O can be thought of as a continuous set.

Classification and
regression.

First, let us focus on classification. In simplest cases, O ⊂ N is a collection
of integers that identify the class of e. For example, in the handwritten character
recognition problem, restricted to digits, we might have |O| = 10. In this case, we can
promptly see the importance of distinguishing the physical, the environmental, and
the decision information with respect to their corresponding internal representation
of the machine. At the pure physical level, handwritten chars are the outcome of
the physical process of light reflection. It can be captured as soon as we define the
retina R as a rectangle of R2, and interpret the reflected light by the image function

4 CHAPTER 1 The Big Picture

4 trillion records! For all of them, the programmer would be expected to be patient
enough to complete the table with the associated class code. This simple example is
a sort of 2d warning message: As d grows towards values that are ordinarily used
for the retina resolution, the space of the table becomes prohibitive. There is more
– we have made the tacit assumption that the characters are provided by a reliable
segmentation program, which extracts them properly from a given form. While this
might be reasonable in simple contexts, in others segmenting the characters might
be as difficult as recognizing them.Segmentation might

be as difficult as
recognition!

In vision and speech perception, nature seems
to have fun in making segmentation hard. For example, the word segmentation of
speech utterances cannot rely on thresholding analyses to identify low levels of the
signal. Unfortunately, those analyses are doomed to fail. The sentence “computers
are attacking the secret of intelligence”, quickly pronounced, would likely
be segmented as

com / pu / tersarea / tta / ckingthesecre / tofin / telligence.

The signal is nearly null before the explosion of voiceless plosives p, t, k, whereas,
because of phoneme coarticulation, no level-based separation between contiguous
words is reliable. Something similar happens in vision. Overall, it looks like seg-
mentation is a truly cognitive process that in most interesting tasks does require
understanding the information source.

1.1.1 LEARNING TASKS
IntelligentAgent: χ : E → D . agents interact with the environment, from which they are expected to
learn, with the purpose of solving assigned tasks. In many interesting real-world prob-
lems we can make the reasonable assumption that the intelligent agent interacts with
the environment by distinct segmented elements e ∈ E of the learning environment,
on which it is expected to take a decision. Basically, we assume somebody else has
already faced and solved the segmentation problem, and that the agent only processes
single elements from the environment. Hence, the agent can be regarded as a func-
tion χ : E → O , where the decision result is an element of O . For example, when
performing optical character recognition in plain text, the character segmentation can
take place by algorithms that must locate the row/column transition from the text to
background. This is quite simple, unless the level of noise in the image document is
pretty high.

χ = h ◦ f ◦ π ,
where π is the input

encoding, f is the
learning function,

and h is the output
encoding.

In general, the agent requires an opportune internal representation of elements
in E and O , so that we can think of χ as the composition χ = h ◦ f ◦ π . Here
π : E → X is a preprocessing map that associates every element of the environment
e with a point x = π(e) in the input space X , f : X → Y is the function that takes
the decision y = f (x) on x, while h : Y → O maps y onto the output o = h(y).
In the above handwritten character recognition task we assume that we are given a
low resolution camera so that the picture can be regarded as a point in the environ-
ment space E . This element can be represented — as suggested by Eq. (1.1.1) — as
elements of a 64-dimensional Boolean hypercube (i.e., X ⊂ R64). Basically, in this
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FIGURE 1.1

This learning task is presented in the UCI Machine Learning repository
https://archive.ics.uci.edu/ml/datasets/Car+Evaluation.

h = id . Hence, regression is characterized by Y ∈ Rn. Examples of regression tasks
might involve values on the stock market, electric energy consumption, temperature
and humidity prediction, and expected company income.

Attribute type.The information that a machine is expected to process may have different at-
tribute types. Data can be inherently continuous. This is the case of classic fields
like computer vision and speech processing. In other cases, the input belongs to a
finite alphabet, that is, it has a truly discrete nature. An interesting example is the
car evaluation artificial learning task proposed in the UCI Machine Learning repos-
itory https://archive.ics.uci.edu/ml/datasets/Car+Evaluation. The evaluation that is
sketched below in Fig. 1.1 is based on a number of features ranging from the buying
price to the technical features.

Here CAR refers to car acceptability and can be regarded as the higher order cate-
gory that characterizes the car. The other high-order category uppercase nodes PRICE,
TECH, and COMFORT refer to the overall notion of price, technical and comfort features.
Node PRICE collects the buying price and the maintenance price, COMFORT groups to-
gether the number of doors (doors), the capacity in terms of person to carry (person),
and the size of luggage boot (lug-boot). Finally, TECH, in addition to COMFORT, takes
into account the estimated safety of the car (safety). As we can see, there is remark-
able difference with respect to learning tasks involving continuous feature, since in
this case, because of the nature of the problem, the leaves take on discrete values.
When looking at this learning task carefully, the conjecture arises that the decision
might benefit from considering the hierarchical aggregation of the features that is
sketched by the tree. On the other hand, this might also be arguable, since all the
leaves of the tree could be regarded as equally important for the decision.
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FIGURE 1.2

Two chemical formulas: (A) acetaldehyde with formula CH3CHO, (B) N-heptane with the
chemical formula H3C(CH2)5CH3.

However,Data structure. there are learning tasks where the decision is strongly dependent on
truly structured objects, like trees and graphs. For example, Quantitative Structure
Activity Relationship (QSAR) explores the mathematical relationship between the
chemical structure and the pharmacological activity in a quantitative manner. Sim-
ilarly, Quantitative Structure-Property Relationship (QSPR) is aimed at extracting
general physical–chemical properties from the structure of the molecule. In these
cases we need to take a decision from an input which presents a relevant degree of
structure that, in addition to the atoms, strongly contributes to the decision process.
Formulas in Fig. 1.2 are expressed by graphs, but chemical conventions in the rep-
resentation of formulas, like for benzene, do require careful investigation of the
way e ∈ E is given an internal representation x ∈ X by means of function π .

Spatiotemporal
environments.

Most challenging learning tasks cannot be reduced to the assumption that the
agent processes single entities e ∈ E . For example, the major problem that typically
arises in problems like speech and image processing is that we cannot rely on robust
segmentations of entities. Spatiotemporal environments that typically characterize
human life offer information that is spread in space and time, without offering re-
liable markers to perform segmentation of meaningful cognitive patterns. Decisions
arise because of a complex process of spatiotemporal immersion. For example, hu-
man vision can also involve decisions at pixels level, in contexts which involve the
spatial regularities, as well as the temporal structure connected to sequential frames.
This seems to be mostly ignored in most research on object recognition. On the other
hand, the extraction of symbolic information from images that are not frames of a
temporally coherent visual stream would have been extremely harder than in our vi-
sual experience. Clearly, this comes from the information-based principle that in any
world of shuffled frames, a video requires an order of magnitude more information
for its storing than the corresponding temporally coherent visual stream. As a conse-
quence, any recognition process is remarkably more difficult when shuffling frames,
which clearly indicates the importance of keeping the spatiotemporal structure that
is naturally associated with the learning task. Of course, this makes it more difficult
to formulate sound theories of learning. In particular, if we really want to fully cap-
ture spatiotemporal structures, we must abandon the safe model of processing single

Structured representations (con’t)
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discussions). Yet, the methodologies at the basis of those models are remarkably dif-
ferent. Scientists in the field often come from two different schools of thought, which
lead them to look at learning tasks from different corners. An influential school is
the one which originates with symbolic AI. As it will be sketched in Section 1.5,
one can regard computational models of learning as search in the space of hypothe-
ses. A somewhat opposite direction is the one with focusses on continuous-based
representations of the environment, which favors the construction of learning mod-
els conceived as optimization problems. This is what is mostly covered in this book.
Many intriguing open problems are nowadays at the border of these two approaches.

1.1.3 BIOLOGICAL AND ARTIFICIAL NEURAL NETWORKS
One of the Artificial neurons.simplest models of artificial neurons consists of mapping the inputs by a
weighted sum that is subsequently transformed by a sigmoidal nonlinearity according
to

ai = bi +
d∑

j=1

wi,j xj ,

yi = σ (ai) = 1/(1 + e−ai ).

(1.1.2)

The squash function σ (·) favors a decision-like behavior, since yi → 1 or yi → 0 as
the activation diverges (ai → ±∞). Here, i denotes a generic neuron, while wi,j is
the weight associated with the connection from input j to neuron i. We can use this
building block for constructing neural networks that turn out to compute complex
functions by composing many neurons. Amongst the possible ways of combining
neurons, the MLNs are also

referred to as
multilayered
perceptrons (MLPs).

multilayered neural network (MLN) architecture is one of the most pop-
ular, since it has been used in an impressive number of different applications. The
idea is that the neurons are grouped into layers, and that we connect only neurons
from lower to upper layers. Hence, we connect j to i if and only if l(j) < l(i),
where l(k) denotes the layer where the generic unit k belongs to. We distinguish the
input layer I , the hidden layers H , and the output O layer. Multilayer networks can
have more that one hidden layer. The computation takes place according to a piping
scheme where data available at the input drives the computational flow. We consider
the MLP of Fig. 1.3 that is conceived for performing handwritten character recogni-
tion. Parallel computing

on the neurons of
the same layer and
piping.

First, the processing of the hidden units takes place and then, as their activations
are available, they are propagated to the output. The neural network receives, as input,
the output of the preprocessing module x = π(e) ∈ R25. The network contains 15
hidden neurons and 10 output neurons. Its task is that of providing an output which
is as close as possible to the target indicated in the figure. As we can see, when the
network receives the input pattern “2”, it is expected to return an output which is as
close as possible to the target, indicated by the 1 on top of neuron 43 in Fig. 1.3. Here
one-hot encoding has been assumed, so as only the target corresponding to class “2”
is high, whereas all the others are set to zero. The input character is presented to the
input layer by an appropriate row scanning of the picture and then it is forwarded to
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FIGURE 1.3

Recognition of handwritten chars. The incoming pattern x = π( ) is processed by the
feedforward neural network, whose target consists of firing only neuron 43. This
corresponds with the one-hot encoding of class “2”.

the hidden layer, where the network is expected to construct features that are useful
for the recognition process. The chosen 15 hidden units are expected to capture dis-
tinctive properties of different classes. Human interpretation of similar features leads
to the characterization of geometrical and topological properties.Mass geometry,

smoothness, and
topology based

features.

Area, perimeter, as
well as features from mass geometry, help discriminating the chars. The barycenter
and the momentum of different order detect nice properties of the patterns but, as
already pointed out, the features might also be related to our own intuitions on what
is characterizing the different classes, like the roundness and number of holes pro-
vide additional cues. There are also some key points, like corners and crosses, that
strongly characterize some class (e.g., the cross of class “8”). Interestingly, one can
think of the neurons of the hidden layer as feature detectors, but it is clear that we
are in front of two fundamental questions: Which features can we expect the MLP will
detect? Provided that the MLP can extract a certain set of features, how can we deter-
mine the weights of the hidden neurons that perform such a feature detection? Most
of these questions will be addressed in Chapter 5, but we can start making some in-
teresting remarks. First, since the purpose of this neural network is that of classifying
the chars, it might not be the case that the above mentioned features are the best ones
to be extracted under the MLP. Second, we can immediately grasp the idea of learning,
which consists of properly selecting the weights, in such a way to minimize the error
with respect to the targets. Hence, a collection of handwritten chars, along with the
corresponding targets, can be used for data fitting. As it will be shown in the follow-
ing section, this is in fact a particular kind of learning from example scheme that is
based on the information provided by an oracle referred to as the supervisor. While
the overall purpose of learning is that of providing the appropriate classification, the
discovery of the weights of the neurons leads to constructing intermediate hidden

Feedforward neural network
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the concept acquisition also requires a different assessment. First, let us consider the
case of batch-mode. We can measure the classification quality in the training set by
computingThe error function

measures the
progress of

learning. E(w) =
ℓ∑

κ=1

n∑

j=1

(1 − yκj fj (w, xκ))+, (1.1.3)

where n is the number of classes and fj (w, xκ) is the j th output of the network fed
with pattern xκ . Throughout the book we use the notation (·)+ to represent the hinge
function, which is defined as (z)+ = z · [z > 0], where [z > 0] = 1 if z > 0 and
[z > 0] = 0, otherwise. Hence (1 − yκj fj (w, xκ))+ = 0 holds whenever there is a
strong sign agreement between the output fj (w, xκ ) and the target yκj . Notice that
because of the one-hot encoding, the index j = 1, . . . , n corresponds with the class
index. Now, fj (w, xκ) and yκj must agree on the sign, but robustness requirements
in the classification lead us to conclude that the outputs cannot be too small.(N , L ) ! E(·).

Learning is the
optimization of

E(·).

The pair
(N ,L ), which is composed of the neural network N and of the training set L ,
offers the ingredients for the construction of the error function in Eq. (1.1.3) that,
once minimized, returns a weight configuration of the neural network that well fits
the training set. As it will become clear in the following, unfortunately, fitting the
training set isn’t necessarily a guarantee of learning the underlining concept. The
reason is simple: The training set is only sampling the probability distribution of
the concept and, therefore, its approximation very much depends on the relevance of
the samples, which is strongly related to the cardinality of the training set and to the
difficulty of the concept to the learned.

As we move to online mode, the formulation of learning needs some additional
thoughts. A straightforward extension from batch-mode suggests adopting the er-
ror function Et computed over Lt . However, this is tricky, since Et changes as
new supervised examples come.While in batch-mode, learning consists of finding
w⋆ = arg minw E(w), in this case we must carefully consider the meaning of opti-
mization at step t . The intuition suggests that we need not reoptimize Et at any step.
Numerical algorithms, like gradient descent, can in fact optimize the error on single
patterns as they come. While this seems to be reasonable, it is quite clear that such
a strategy might led to solutions in which the neural network is inclined to “forget”
old patterns. Hence, the question arises on what we are really doing when performing
online learning by gradient weight updating.

Unsupervised
learning.

The link with human cognition early leads us to explore learning processes that
take place regardless of supervision. Human cognition is in fact characterized by
processes of concept acquisition that are not primarily paired with supervision. This
suggests that while supervised learning allows us to be in touch with the external
symbolic interpretations of environmental concepts, in most cases, humans carry
out learning schemes to properly aggregate data that exhibit similar features. How
many times do we need to supervise a child on the concept of glass?The glass example. It’s hard to
say, but surely a few examples suffice to learn. Interestingly, the acquisition of the
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This chapter gives a big picture of the book. Its reading offers an overall view of
the current machine learning challenges, after having discussed principles and their
concrete application to real-world problems. The chapter introduces the intriguing
topic of induction, by showing its puzzling nature, as well as its necessity in any task
which involves perceptual information.

1.1 WHY DO MACHINES NEED TO LEARN?
Why The metalevel of

machine learning.
do machines need to learn? Don’t they just run the program, which simply

solves a given problem? Aren’t programs only the fruit of human creativity, so as
machines simply execute them efficiently? No one should start reading a machine
learning book without having answered these questions. Interestingly, we can easily
see that the classic way of thinking about computer programming as algorithms to
express, by linguistic statements, our own solutions isn’t adequate to face many chal-
lenging real-world problems. We do need to introduce a metalevel, where, more than
formalizing our own solutions by programs, we conceive algorithms whose purpose
becomes that of describing how machines learn to execute the task.

As an example let us consider the case of handwritten character
recognition. Handwritten

characters: The 2d

warning!

To make things easy, we assume that an intelligent agent is
expected to recognize chars that are generated using black and white
pixels only — as it is shown in the figure. We will show that also
this dramatic simplification doesn’t reduce significantly the difficulty
of facing this problem by algorithms based on our own understanding of regularities.
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∼ 0001100000100100000000100000001000000010100001000111110000000011.

(1.1.1)

Of course, we can construct tables with similar strings, along with the associated
class code. In so doing, handwritten char recognition would simply be reduced to
the problem of searching a table. Char recognition

by searching a
table.

Unfortunately, we are in front of a table with
264 = 18446744073709551616 items, and each of them will occupy 8 bytes, for
a total of approximately 147 quintillion (1018) bytes, which makes totally unreason-
able the adoption of such a plain solution. Even a resolution as small as 5×6 requires
storing 1 billion records, but just the increment to 6 × 7 would require storing about
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representations that represent the pattern features. In Fig. 1.3 the pattern which is
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plex spatiotemporal structure of perception results in very difficult problems of signal
interpretation.

Supervised
learning.

Since the dawn of learning machines, scientists isolated a simple interaction pro-
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sees enough labeled examples then it will be able to induce the class of any new
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vised learning, assumes that the training set L is processed as a whole for updating
the weights of the neural network. Within this framework, supervised data involving
a certain concept to be learned are downloaded all at once. The parallel with human
cognition helps understanding the essence of this awkward protocol: Newborns don’t
receive all their life bits as they come to life! They live in their own environment and
gradually process data as time goes by. Batch mode, however, is pretty simple and
clear, since it defines the objectives of the learning agent, who must minimize the
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Instead of working with a training set, we can think of learning as an adaptive
mechanism aimed at optimizing the behavior over a sequential data stream. In this
context, the training set L of a given dimension ℓ = |L | is replaced Throughout the

book we use
Iverson’s
convention: Given
a proposition S, the
bracketed notation
[S] is 1 if S is true,
0 otherwise.

with the
sequence Lt = {{(e1, o1), . . . , (et , ot )}, where the index t isn’t necessarily upper
bounded, that is, t < ∞. The process of adapting the weights with Lt is referred to
as online learning. We can promptly see that, in general, it is remarkably different
with respect to batch-mode learning. While in the first case the given collection L
of ℓ samples is everything what is available for acquiring the concept, in case of on-
line learning, the flux of incoming supervised pairs data never stops. This protocol is
dramatically different from batch-mode, and any attempt to establish the quality of
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the concept acquisition also requires a different assessment. First, let us consider the
case of batch-mode. We can measure the classification quality in the training set by
computingThe error function

measures the
progress of

learning. E(w) =
ℓ∑

κ=1

n∑

j=1

(1 − yκj fj (w, xκ))+, (1.1.3)

where n is the number of classes and fj (w, xκ) is the j th output of the network fed
with pattern xκ . Throughout the book we use the notation (·)+ to represent the hinge
function, which is defined as (z)+ = z · [z > 0], where [z > 0] = 1 if z > 0 and
[z > 0] = 0, otherwise. Hence (1 − yκj fj (w, xκ))+ = 0 holds whenever there is a
strong sign agreement between the output fj (w, xκ ) and the target yκj . Notice that
because of the one-hot encoding, the index j = 1, . . . , n corresponds with the class
index. Now, fj (w, xκ) and yκj must agree on the sign, but robustness requirements
in the classification lead us to conclude that the outputs cannot be too small.(N , L ) ! E(·).

Learning is the
optimization of

E(·).

The pair
(N ,L ), which is composed of the neural network N and of the training set L ,
offers the ingredients for the construction of the error function in Eq. (1.1.3) that,
once minimized, returns a weight configuration of the neural network that well fits
the training set. As it will become clear in the following, unfortunately, fitting the
training set isn’t necessarily a guarantee of learning the underlining concept. The
reason is simple: The training set is only sampling the probability distribution of
the concept and, therefore, its approximation very much depends on the relevance of
the samples, which is strongly related to the cardinality of the training set and to the
difficulty of the concept to the learned.

As we move to online mode, the formulation of learning needs some additional
thoughts. A straightforward extension from batch-mode suggests adopting the er-
ror function Et computed over Lt . However, this is tricky, since Et changes as
new supervised examples come.While in batch-mode, learning consists of finding
w⋆ = arg minw E(w), in this case we must carefully consider the meaning of opti-
mization at step t . The intuition suggests that we need not reoptimize Et at any step.
Numerical algorithms, like gradient descent, can in fact optimize the error on single
patterns as they come. While this seems to be reasonable, it is quite clear that such
a strategy might led to solutions in which the neural network is inclined to “forget”
old patterns. Hence, the question arises on what we are really doing when performing
online learning by gradient weight updating.

Unsupervised
learning.

The link with human cognition early leads us to explore learning processes that
take place regardless of supervision. Human cognition is in fact characterized by
processes of concept acquisition that are not primarily paired with supervision. This
suggests that while supervised learning allows us to be in touch with the external
symbolic interpretations of environmental concepts, in most cases, humans carry
out learning schemes to properly aggregate data that exhibit similar features. How
many times do we need to supervise a child on the concept of glass?The glass example. It’s hard to
say, but surely a few examples suffice to learn. Interestingly, the acquisition of the
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glass concept isn’t restricted to the explicit association of instances along with their
correspondent symbolic description. Humans manipulate objects and look at them
during their life span, which means that concepts are likely to be mostly acquired in
a sort of unsupervised modality. Glasses are recognized because of their shape, but
also because of their function. A glass is a liquid container, a property that can be
gained by looking at the action of its filling up. Hence, a substantial support to the
process of human object recognition is likely to come from their affordances — what
can be done with them. Clearly, the association of the object affordance with the cor-
responding actions doesn’t necessarily require one to be able to express a symbolic
description of the action. The attachment of a linguistic label seems to involve a cog-
nitive task that does require the creation of opportune object internal representations.
This isn’t restricted to vision. Similar remarks hold for language acquisition and for
any other learning task. This is indicating that important learning processes, driven
by aggregation and clustering mechanisms, take place at an unsupervised level. No
matter which label we attach to patterns, data can be clustered as soon as we in-
troduce opportune similarity measures. Space oddities at

high dimensions.
The notion of similarity isn’t easy to grasp

by formal descriptions. One can think of paralleling similarity with the Euclidean
distance in a metric space X ⊂ Rd . However, that metrics doesn’t necessarily cor-
respond with similarity. What is the meaning of similarity in the handwritten char
task? Let us make things easy and restrict ourselves to the case of black and white
images. We can soon realize that Euclidean metrics badly reflects our cognitive no-
tion of similarity. This becomes evident when the pattern dimension increases. To
grasp the essence of the problem, suppose that a given character is present in two in-
stances, one of which is simply a right-shifted instance of the other. Clearly, because
high dimension is connected with high resolution, the right-shifting creates a vector
where many coordinates corresponding to the black pixels are different! Yet, the class
is the same. When working at high resolution, this difference in the coordinates leads
to large pattern distances within the same class. Basically, only a negligible number
of pixels are likely to occupy the same position in the two pattern instances. There
is more: This property holds regardless of the class. This raises fundamental issues
on the deep meaning of pattern similarity and on the cognitive meaning of distance
in metric spaces. The Euclidean space exhibits a somewhat surprising feature at high
dimension, which leads to unreliable thresholding criteria. Let us focus on the math-
ematical meaning of using Euclidian metrics as similarities. Suppose we want to see
which patterns x ∈ X ⊂ Rd are close to x ∈ X according to the thresholding
criterion ∥x − x∥ < ρ, where ρ ∈ R+ expresses the degree of neighborhood to x. Of
course, small values of ρ define very close neighbors, which perfectly matches our
intuition that x and x are similar because of their small distance. This makes sense in
the three-dimensional Euclidean space that we perceive in real life. However, the set
of neighbors Nρ = { x ∈ X | ∥x − x∥ < ρ } possesses a curious property at high
dimension. Its volume is

vol (Nρ) = (
√

π)d

#(1 + d
2 )

ρd , (1.1.4)
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where ! is the gamma function. Suppose we fix the threshold value ρ. We can prove
that the volume approaches zero as d → ∞ (see Exercise 5). There is more: The
sphere, regarded as an orange, doesn’t differ from its peel! This comes directly from
the previous equation. Suppose we consider a ball Nρ−ϵ with radius ρ−ϵ > 0. When
ϵ ≪ ρ, the set

Pϵ = {x ∈ X | ∥x − x∥ < ρ and ∥x − x∥ > ρ − ϵ }

is the peel of the ball. Now, for all ϵ > 0, as d → ∞, its volume isAs d → ∞, the
orange collapses to
its peel. Hence, no

thresholding
criterion can

discriminate the
patterns.

vol (Pϵ) = lim
d→∞

vol (Nρ)

(
1 − vol (Nϵ)

vol (Nρ)

)

= vol (Nρ)

(

1 − lim
d→∞

(
ρ − ϵ

ρ

)d
)

= vol (Nρ).

(1.1.5)

As a consequence, the thresholding criterion for identifying Pϵ corresponds with
checking the condition x ∈ Nρ . However, the above geometrical property, which
reduces the ball to its frontier, means that, apart from a set of null measure, we have
x ∈ Pϵ . It is instructive to see how vol (Nρ) scales up with respect to the volume of
the sphere SM which contains all the examples of the training set. If we denote by
xM the point such that ∀x ∈ X : ∥x∥≤ ∥xM∥ then

lim
d→∞

vol Nρ

vol SM
= lim

d→∞

(
ρ

∥xM∥

)d

= 0.

To sum up, at high dimension, the probability of satisfying the neighboring condition
vanishes, thus making the criterion unusable. While the similarity in the ordinary
three-dimensional Euclidean space is somewhat connected with the metrics, as the
dimension increases this connection vanishes. It is worth mentioning that this math-
ematical discussion on oddities associated with high-dimensional spaces relies on
the assumption that the points are uniformly distributed in the space, which doesn’t
really hold in practice. However, as shown in the analysis on right-shifting of hand-
written chars, also in cases of the biased distribution induced by a real-world problem,
high-dimensional oddities are still a serious issue. This has a direct impact when in-
terpreting the notion of pattern similarity as an Euclidean metrics.

This discussion suggests that the unsupervised aggregation of data must take into
account the related cognitive meaning, since metric assumptions on the pattern space
might led to a wrong interpretation of human concepts.Parroting in

humans and
machines.

As the discussion on the
glass example suggests, unsupervised learning is of central importance in human
life, and it is likely to be of crucial importance regardless of biology. Hence, just like
humans, learning machines must somehow be able to capture invariant features that
significantly help clustering processes. The experience with language acquisition in
children suggests that parroting is a fundamental developmental step. Could not it
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checking the condition x ∈ Nρ . However, the above geometrical property, which
reduces the ball to its frontier, means that, apart from a set of null measure, we have
x ∈ Pϵ . It is instructive to see how vol (Nρ) scales up with respect to the volume of
the sphere SM which contains all the examples of the training set. If we denote by
xM the point such that ∀x ∈ X : ∥x∥≤ ∥xM∥ then
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d→∞

vol Nρ

vol SM
= lim

d→∞

(
ρ

∥xM∥

)d

= 0.

To sum up, at high dimension, the probability of satisfying the neighboring condition
vanishes, thus making the criterion unusable. While the similarity in the ordinary
three-dimensional Euclidean space is somewhat connected with the metrics, as the
dimension increases this connection vanishes. It is worth mentioning that this math-
ematical discussion on oddities associated with high-dimensional spaces relies on
the assumption that the points are uniformly distributed in the space, which doesn’t
really hold in practice. However, as shown in the analysis on right-shifting of hand-
written chars, also in cases of the biased distribution induced by a real-world problem,
high-dimensional oddities are still a serious issue. This has a direct impact when in-
terpreting the notion of pattern similarity as an Euclidean metrics.

This discussion suggests that the unsupervised aggregation of data must take into
account the related cognitive meaning, since metric assumptions on the pattern space
might led to a wrong interpretation of human concepts.Parroting in

humans and
machines.

As the discussion on the
glass example suggests, unsupervised learning is of central importance in human
life, and it is likely to be of crucial importance regardless of biology. Hence, just like
humans, learning machines must somehow be able to capture invariant features that
significantly help clustering processes. The experience with language acquisition in
children suggests that parroting is a fundamental developmental step. Could not it
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glass concept isn’t restricted to the explicit association of instances along with their
correspondent symbolic description. Humans manipulate objects and look at them
during their life span, which means that concepts are likely to be mostly acquired in
a sort of unsupervised modality. Glasses are recognized because of their shape, but
also because of their function. A glass is a liquid container, a property that can be
gained by looking at the action of its filling up. Hence, a substantial support to the
process of human object recognition is likely to come from their affordances — what
can be done with them. Clearly, the association of the object affordance with the cor-
responding actions doesn’t necessarily require one to be able to express a symbolic
description of the action. The attachment of a linguistic label seems to involve a cog-
nitive task that does require the creation of opportune object internal representations.
This isn’t restricted to vision. Similar remarks hold for language acquisition and for
any other learning task. This is indicating that important learning processes, driven
by aggregation and clustering mechanisms, take place at an unsupervised level. No
matter which label we attach to patterns, data can be clustered as soon as we in-
troduce opportune similarity measures. Space oddities at

high dimensions.
The notion of similarity isn’t easy to grasp

by formal descriptions. One can think of paralleling similarity with the Euclidean
distance in a metric space X ⊂ Rd . However, that metrics doesn’t necessarily cor-
respond with similarity. What is the meaning of similarity in the handwritten char
task? Let us make things easy and restrict ourselves to the case of black and white
images. We can soon realize that Euclidean metrics badly reflects our cognitive no-
tion of similarity. This becomes evident when the pattern dimension increases. To
grasp the essence of the problem, suppose that a given character is present in two in-
stances, one of which is simply a right-shifted instance of the other. Clearly, because
high dimension is connected with high resolution, the right-shifting creates a vector
where many coordinates corresponding to the black pixels are different! Yet, the class
is the same. When working at high resolution, this difference in the coordinates leads
to large pattern distances within the same class. Basically, only a negligible number
of pixels are likely to occupy the same position in the two pattern instances. There
is more: This property holds regardless of the class. This raises fundamental issues
on the deep meaning of pattern similarity and on the cognitive meaning of distance
in metric spaces. The Euclidean space exhibits a somewhat surprising feature at high
dimension, which leads to unreliable thresholding criteria. Let us focus on the math-
ematical meaning of using Euclidian metrics as similarities. Suppose we want to see
which patterns x ∈ X ⊂ Rd are close to x ∈ X according to the thresholding
criterion ∥x − x∥ < ρ, where ρ ∈ R+ expresses the degree of neighborhood to x. Of
course, small values of ρ define very close neighbors, which perfectly matches our
intuition that x and x are similar because of their small distance. This makes sense in
the three-dimensional Euclidean space that we perceive in real life. However, the set
of neighbors Nρ = { x ∈ X | ∥x − x∥ < ρ } possesses a curious property at high
dimension. Its volume is

vol (Nρ) = (
√

π)d

#(1 + d
2 )

ρd , (1.1.4)



A nice exercise …
Compute the into-char Eucliean distance in MNIST!
You’ll lean a lot about space oddities …
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FIGURE 1.4

Pattern auto-encoding by an MLP. The neural net is supervised in such a way to reproduce
the input to the output. The hidden layer yields a compressed pattern representation.

be an important skill to acquire well beyond language acquisition? Fig. 1.4 shows a
possible way of constructing parroting mechanisms in any pattern space.

Unsupervised
learning as
minimization of
auto-encoding.

Given an unsupervised pattern collection D = { x1, . . . , xℓ} ⊂ X ℓ, we define a
learning protocol based on data auto-encoding. The idea is that we minimize a cost
function that expresses the auto-encoding principle: Each example xκ ∈ X is forced
to be reproduced to the output. Hence, we construct an unsupervised learning process,
which consists of determining

w⋆ = arg min
w

∑

xκ∈D

∥f(w, xκ) − xκ∥2. (1.1.6)

In so doing, the neural network parrots xκ to f(w, xκ ) ≃ xκ . Notice that the training
that takes place on D leads to the development of internal representations of all ele-
ments xκ ∈ X in the hidden layer. In Fig. 1.4, patterns of dimension 25 are mapped
to vectors of dimension 5. In doing so, we expect to develop an internal represen-
tation at low dimension, where some distinguishing features are properly detected.
The internal discovery of those features is the outcome of learning, which leads us to
introduce a measure for establishing whether a given pattern x ∈ X belongs to the
probability distribution associated to the samples D and characterized by the learned
auto-encoder. When considering the correspondent learned weights w⋆, we can in-
troduce the similarity function

sD (x) := ∥x − f(w⋆, x)∥. (1.1.7)

Auto-encoded set
(D, ρ) ! X ρ

D .
This makes it possible to introduce the thresholding criterion sD (x) < ρ. Unlike the
Euclidean metrics, the set X ρ

D := {x ∈ X | sD (x) < ρ} is learned from examples
by discovering ŵ according to Eq. (1.1.6). In doing so, we give up looking for magic

Pattern auto-encoding
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Other protocols of learning

• semi-supervised learning

• transductive learning

• reinforcement learning

• active learning


