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�(f(x)) = 0

given task to be learned

� � f = 0

What about a joint discovery of � fand ?
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Here H2 denotes the Sobolev space W2,2. Function f is supposed to model
the tasks, while � is expected to capture regularities in the concept space
f(X ) ⇢ Y. The perceptual information x 2 X is processed by the agent and
is mapped to the categorical layer by f(x). Any collection

of rules can

always be

regarded as a

scalar

constraint

expressed by a

factorization of

m constraints

�

i

.

We can think of function � as
the one which induces scalar constraints that properly aggregate �, like for
instance

8x 2 X : �̄(f(x)) =
mY

i=1

�i(f(x)) = 0. (1)

Clearly, for any x 2 X , Eq. 1 is verified whenever there exists at least
i 2 [1, . . ,m] such that �i(f(x)) = 0. Hence, the determination of the task
function f from a single scalar constraint �̄ is related to the satisfaction
of at least one of the m constraints. Of course, more than one constraints
can hold true in the same point. It is worth mentioning that this holds
8x 2 X , that is the constraint is associated with a generalized quantization
that does not require to convey information on the points on which the rules
hold true. Here, we move the generality of the statements to the perceptual
space, while we charge the single functions �i of constructing the partitions
over X so as to carry out the required quantization. Unilateral

constraints

coming from

the companion

bilateral form

Notice that unilateral
constraints of the form  i(f(x)) � 0 can always be expressed in terms of
bilateral constraint �i(f(x)) = 0 whenever we pose

�i(x) = (� (x))+ := [ (x) > 0] (x).

The case of unilateral constraints in fact more relevant in most real-world
environments. This also suggest to restrict the co-domain of �i to [0,1], so
as the null value indicates perfect satisfaction. We can promptly see that
there is a least the trivial solution �̄ = 0, which ensures that the functional
set

B = {�̄ : Y ! Z : 8x 2 X : �̄(f(x)) = 0}
is not void. However, this is exactly the solution we want to avoid. The
introduction of set Xi := {x 2 X : �i(f(x)) = 0} makes it possible to
connect the scalar constraint given by Eq. 1 with the collection of constraints

8x 2 Xi : �i(f(x)) = 0, i = 1, . . . , m̄ (2)

where 1  m̄  m. Purpose of

learning:

Determine

(f,�,Q
f

)

The purpose of learning is that of determining both
the task function f and the rules expressed by �. In addition, when one
is involved in explainability issues then we also would like to understand
where the formula hold true. To this end, it is convenient to think of the
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Unilateral and bilateral constraints

Let’s play with bilateral constraints …
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Quite tricky …

Now let us define

X1 =

⇢
(x1, x2) :

✓
� 1 < x1 < �1

2

◆
^
✓
x2 = 0

◆�

X2 =

⇢
(x1, x2) :

✓
1
2
< x1 < 1

◆
^
✓
x2 = 0

◆�

X3 =

⇢
(x1, x2) :

✓
x1 = 0

◆
^
✓
x2 > 0

◆�
(6)

We can promptly see that � = (�1,�2,�3) defined as

8x 2 X1 : �1 = f1(x)f2(x)� 1 = 0

8x 2 X2 : �2 = f2(x)f3(x)� 1 = 0

8x 2 X3 : �3 = f4(x)� 1 = 0

(7)

is congruent with f . As we can see, in this case, CX = 1IX , that is X = X1 [ X2 [
X3. Clearly, the condition CX $ 1IX corresponds with cases in which there is a partial
knowledge of the rules involved in the learning environment. For example, one might
miss the knowledge of �3 = f4(x) � 1 = 0. Of course, it could also be the case that
we involve more than m = 3 constraints. For example 8x 2 X4 : �4 = f4(x) = 0
where X4 = {(x1, x2) : (�2 < x1 < 2) ^ (x2 = 0)} is still a perfect cover of X , that isS4

i=1 Xi

= X . However, this is a di↵erent cover CX and adding one more constraint is
restricting the space of functions f that congruent with �.

Whenever �̄ is given, Eq. (1) poses the classic learning from constraints
problem [1], where one typically enforces a regularization on f . In that
case, one determines f?

X by

f?
X = argmin

f2CX (�̄)

kfk, (8)

where k·k is a norm in H2. Basically, the ideal f?
X is the most parsimo-

nious element in the set of functions CX (�̄) that are congruent with �̄. Here
we assume that in are in front of hard satisfaction of the constraint. A
related formulation can be given for soft-constraints by introducing the cor-
respondent slack variables. While this problem is well-posed whenever �̄
is given, the discovery of � so as Eq. (1) holds true does require a clear
and sound formulation. Basically, one could regard Eq. 1 as a condition in
which both f and � are unknown. When o↵ering this interpretation, we can
promptly realize that the solution space depends on the interplay between
f and �. Let us focus on the case of Eq. 1. In the case of linear functions,
if y = f(x) = Ax and �̄ = By then �̄(f(x)) = BAx. If �̄(f(x)) = BAx = 0
then the same holds for BPP�1A, where P 2 R

n,n is an invertible matrix.
Hence, if the pair (A,B) solves Eq. 1 then the same holds for (P�1A,PB).
Notice that this is not the only reason why the problem is not well-posed.
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Formulation of Learning

Developmental Learning

with Constraints
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Abstract

In the last few years we have seen a remarkable progress from the
cultivation of the idea of expressing the interactions of intelligent agents
with the environment by the mathematical notion of constraint. How-
ever, the progress has mostly involved the process of providing con-
sistent solutions with a given set of constraints, whereas learning new
constraints to adapt to the environmental changes is still an open chal-
lenge. In this paper we propose a novel approach to learning from -
and of - constraints which is based on information-based principles.
The solution of the arising learning problem is given in the Lagrangian
framework, which o↵ers a truly biologically plausible learning algo-
rithm and suggests a developmental scheme that is driven by the focus
of attention.

1 Introduction

• learning in the perceptual (concept or task functions) and in the con-
cept space (constraints, that are also called rules)

• focus of attention and filtering of information

• Lagrangian approach

• biological plausibility: locality and developmental issues

• stages

2 Formulation of learning

Let us consider f : X ⇢ R

d ! Y ⇢ R

n and � : Y ⇢ R

n ! Z ⇢ R

m that are
supposed to belong to functional spaces A ⇢ H2 and B ⇢ H2, respectively.
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The elements of CX are referred to as congruent pairs and use the notation

f
X⇠ � whenever (f,�) 2 CX . In the following, CX (f) denotes the set of

� that are congruent with f and, likewise, CX (�) is the set of f that is
congruent with �. If we consider the map generated by f on Xi then Eq. 2
can be re-written as

8f 2 Fi : �i(f) = 0, i = 1, . . . , m̄ (4)

where Fi = f(Xi). Hence, the quantification in the concept space involves
the collection Qf = {Fi, i = 1, m̄}. In some cases, where explainability is
an important issue we might also be interested in understaning where the
formula hold true, that is Qf .

Example 2.1 Suppose we are given an agent defined by f : X ⇢ R2 ! [0, 1]4. In
particular, the domain is

X = {(x
,

x2) 2 R2 : ((�2 < x1 < 2) ^ (x2 = 0) _ ((x1 = 0) ^ (x2 > 0))}.

Now, we give an example of pair congruent pair (f,�) 2 CX . We begin assuming that

f1(x1, x2) = [|x1| < 1]

f2(x1, x2) =


� 2 < x1 < �1

2
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f3(x1, x2) =


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2
< x1 < 2

�
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1
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◆�

(5)

3
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Example (con’t)
Now let us define

X1 =

⇢
(x1, x2) :

✓
� 1 < x1 < �1

2

◆
^
✓
x2 = 0

◆�

X2 =

⇢
(x1, x2) :

✓
1
2
< x1 < 1

◆
^
✓
x2 = 0

◆�

X3 =

⇢
(x1, x2) :

✓
x1 = 0

◆
^
✓
x2 > 0

◆�
(6)

We can promptly see that � = (�1,�2,�3) defined as

8x 2 X1 : �1 = f1(x)f2(x)� 1 = 0

8x 2 X2 : �2 = f2(x)f3(x)� 1 = 0

8x 2 X3 : �3 = f4(x)� 1 = 0

(7)

is congruent with f . As we can see, in this case, CX = 1IX , that is X = X1 [ X2 [
X3. Clearly, the condition CX $ 1IX corresponds with cases in which there is a partial
knowledge of the rules involved in the learning environment. For example, one might
miss the knowledge of �3 = f4(x) � 1 = 0. Of course, it could also be the case that
we involve more than m = 3 constraints. For example 8x 2 X4 : �4 = f4(x) = 0
where X4 = {(x1, x2) : (�2 < x1 < 2) ^ (x2 = 0)} is still a perfect cover of X , that isS4

i=1 Xi

= X . However, this is a di↵erent cover CX and adding one more constraint is
restricting the space of functions f that congruent with �.

Whenever �̄ is given, Eq. (1) poses the classic learning from constraints
problem [1], where one typically enforces a regularization on f . In that
case, one determines f?

X by

f?
X = argmin

f2CX (�̄)

kfk, (8)

where k·k is a norm in H2. Basically, the ideal f?
X is the most parsimo-

nious element in the set of functions CX (�̄) that are congruent with �̄. Here
we assume that in are in front of hard satisfaction of the constraint. A
related formulation can be given for soft-constraints by introducing the cor-
respondent slack variables. While this problem is well-posed whenever �̄
is given, the discovery of � so as Eq. (1) holds true does require a clear
and sound formulation. Basically, one could regard Eq. 1 as a condition in
which both f and � are unknown. When o↵ering this interpretation, we can
promptly realize that the solution space depends on the interplay between
f and �. Let us focus on the case of Eq. 1. In the case of linear functions,
if y = f(x) = Ax and �̄ = By then �̄(f(x)) = BAx. If �̄(f(x)) = BAx = 0
then the same holds for BPP�1A, where P 2 R

n,n is an invertible matrix.
Hence, if the pair (A,B) solves Eq. 1 then the same holds for (P�1A,PB).
Notice that this is not the only reason why the problem is not well-posed.
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So far … 
learning from constraints
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“Rules” and constraints

When looking for a “rule”, one might also be interested in determining the
set F = f(X ) for which the constraint holds true. In this case of linear
maps, any X ⇢ R

d such that X 2 N (BA), where N (BA) is the kernel of
BA, satisfies the constraints. Clearly, in this case, unless other information
are available, a natural solution seems to be that of taking X with the max-
imum measure in N (BA).

2.1 Information-based interpretation of emerging rules

For any x 2 X ,

each single

constraint �
i

is

associated with

random variable

R, which comes

with an

associated

probability

P
R=i|X=x

which depends

on f,� and p
X

.

The rules on the environment are expected to be captured by �, which ex-
presses a di↵erent degree of satisfaction by the single components �i. Hence,
for any �i we can associate the probability distribution

PR=i|X=x(� � f) = e��
i

(f(x))

Pm
j=1 e

��
j

(f(x))
, (9)

that can be regarded as the probability that rule i holds true on a given
example x 2 X . Clearly, � can be thought of a way of stacking m rules
with di↵erent level of satisfiability, which depends on x. Notice that m � 2.
In the extreme case m = 2 we also take into account the case of a single
rule �, but we have 2 symbols, one of which is denoting the falsification of
the rule. Furthermore, the probability PR=i|X=x(��f) depends on both the
choices of � and f by their composition � � f . Basically we generate R|X
by an appropriate joint selection of � and f . We can promptly see that any
given input probability density pX meets the normalization condition, since
we have

mX

i=1

Z

X
dxpX(x)PR=i|X=x(� � f) =

Z

X
dx

✓ mX

i=1

e��
i

(f(x))

Pm
j=1 e

��
j

(f(x))

◆
pX(x) = 1.

If we take the average of PR=i|X=x(��f) over X then we get the probability
associated with R, that is

PR=i(� � f) =
Z

X
dxpX(x) pR=i|X=x(� � f)

' 1

|D|
X

x


2D
pR=i|X=x



(� � f) := hPR=i(� � f)iD.
(10)
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Mutual Information 

Here, D is a sample of X , that is used to approximate
R
X . Again PR=i

depends on the joint selection of f and � by the composition � � f .
Each single

constraint (rule)

is associated

with random

variable Q
which comes

with its own

probability

which only

depends on �.

Now we introduce another random variable Q to express rules in a di↵er-
ent way without involving the perceptual space. Random variable Q shares
the same domain with R, that is Q takes on integer values i = 1, . . .m, but
with a di↵erent probability with respect to R, which also depends on the
perceptual space X . Basically, we can think of Q as the outcome of the map
�, so as if F is a random variable, one can consider the associated random
variable that is induced by �. The variable is characterized by the discrete
probability distribution

PQ(f)(�(f)) =
e��

i

(f)

Pm
j=1 e

��
j

(f)
. (11)

Notice that while X comes with its own probability density pX , we assume
that the probability distribution of F is uniform in [�1,+1]n. Clearly, Q|F
satisfies the probabilistic normalization and its distribution is due the way
� is coloring the uniform distribution of F . Like for Eq. 10, one can express
PQ=i this time only as a function of � by

PQ=i(�) = EF (PQ=i|F=f (�(f)) =
1

2n

Z

[�1,+1]n
df

e�i

(f)

Pm
j=1 e

�
j

(f)
. (12)

Now we consider the transit of information from the perceptual space to
the rule space, as well as from the concept space to the rule space. This can
nicely be described by the mutual information IX|R and IF |Q, respectively.

Mutual Information IX|R
The introduction of R|X leads one to consider the associated conditional
entropy

HR|X(� � f) = EXR[� logPR|X ]

�
Z

X
dxpX(x)

mX

i=1

PR=i|X=x(� � f) logPR=i|X=x(� � f)

' �
X

x


2D

mX

i=1

PR=i|X=x


(� � f) logPR=i|X=x


(� � f).

(13)

We notice that the discrete random variable R is conditioned by the value
taken by random variable X and that the dependency on � � f is induced
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by the definition of probability given by Eq. 9. This suggests that the
maximization of the entropy

HR(� � f) = �
mX

i=1

PR=i(� � f) logPR=i(� � f) (14)

prevents from the extraction of a single rule. Hence, the mutual information
that is transferred from X to R

IX,R(� � f) = HR(� � f)�HR|X(� � f), (15)

turns out to be a natural information-based index to be taken into account.
Since IX,R(� � f)  HR(� � f)  logm, we can promptly conclude that the
choice of m plays a very important role. Notice that while the maximization
of HR enforces the uniform generation of rules, one might be also interested
in rules that hold for as many examples as possible. In the extreme case,
those rules hold for all points of the perceptual space, so as one could restrict
the accumulation over m in Eq. 14 to m̂ < m, so as m̃ = m � m̂ rules be
free to emerge.

Mutual Information IF |Q
Suppose we want to jointly satisfy 8x 2 Xi, i = 1, . . . ,m : �i(f(x)) = 0.
The discrete random variable Q associated to the i-th rule comes with the
associated probability defined by Eq. 11. Now, consider its entropy

HQ|F (�) = EQ,F (�PQ|F (�(f)) logPQ|F (�(f))

= �
mX

i=1

Z

F
df(PQ=i|F=f (�(f)) logPQ=i|F=f (�(f))

= �
mX

i=1

Z

F
df

e�i

(f)

Pm
j=1 e

�
j

(f)
log

e�i

(f)

Pm
j=1 e

�
j

(f)
.

(16)

In order to develop di↵erent rules HQ|F (�(f)) must be as small as possible.
Likewise, in order not to bias the development of the rules, one would like
to reach high values of the entropy of Q

HQ(�) = EQ(�PQ logPQ) (17)

= �
mX

i=1

PQ=i(�) logPQ=i(�). (18)
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In order to develop di↵erent rules HQ|F (�(f)) must be as small as possible.
Likewise, in order not to bias the development of the rules, one would like
to reach high values of the entropy of Q

HQ(�) = EQ(�PQ logPQ) (17)

= �
mX

i=1

PQ=i(�) logPQ=i(�). (18)
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Overall, we need to maximize the mutual information
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Mutual Information IR|X
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referring to IR|X one need not to assume that f is a function such that f(x)
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possible to construct an appropriate congruency.

Maximum Mutual Information IX|R
Let us consider the problem of determining �, f so as MMI principle

for rule

learning.(f?,�?) = argmax
(f,�)2A⇥B

IX,R(� � f). (19)

Its maximization leads to small values of HX,R. Now we can easily see
that as HX,R ! 0 then there exists i such that PR=i|X=x(� � f) = 1. This
implies 8x 2 Xi : �i(f(x)) = 0 which, in turn, leads to the congruency

f
X⇠ �. Interestingly, the congruent pair selected by the MMI principle o↵ers

a balanced selection of rules, so as to avoid the biasing towards a single rule.
A good formulation of learning, however, must take into account the well-
posedness, that, according to what is found by Eq. 8, can be obtained by
incorporating the parsimony principle. Overall, the learning problem in the
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joint space of the pairs (f,�) can be formulated as the solution of

Developmental

learning by

MMI and

parsimony

principle.

f?(�̄?) = argmin
(f,�)2CX (f,�̄?)

↵kfk (20)

�̄?(f?) = argmin
(f,�)2CX (f?,�)

�
�k�̄?k � IX,R(�̄

? � f)�. (21)

where ↵ > 0 and � > 0 gives the degree of regularization that we want to
enforce during learning. As already noticed, this formulation can promptly
be adapted to soft-constraints.

Circularity

issues and

stage-based

learning.

Eq. 20 states that whenever one knows the scalar constraint �̄? (rules
emerging by factorization) the task f is determined according to the par-
simony connected with k·k in A. Unfortunately, �̄? can only be given by
Eq. 21, once f? is gained. Hence, the joint solution of Eq. 20 and Eq. 21
seems to drown into a circularity issue.

Now suppose we start cycling by beginning with Eq. (20) so as its solution
yields f?

0 (�0). Then we can determine �?
1(f

?
0 ). This cycling process yields

the sequence

�0,
⇥
f?
0 (�̄0),�

?
1(f

?
0 )
⇤
,

⇥
f?
1 (�̄

?
1),�

?
2(f

?
1 )
⇤
,

⇥
f?
2 (�̄

?
2),�

?
3(f

?
2 )
⇤
,

. . .
⇥
f?
�1(�̄

?
�1),�

?
(f

?
�1)

⇤
,

⇥
f?
(�̄

?
),�

?
+1(f

?
)
⇤
.

(22)

The consistency conditions f 2 A and � 2 B ensures that any of the pairs
of the sequence solves the separated problems stated by Eq. 20 and Eq. 21.
Basically, the determination of

⇥
f?
(�̄

?
),�

?
+1(f

?
)
⇤
can be regarded as a stage

of development of the agent. The discovery of those values involves a learning
scheme that is defined by Eq. 20 and Eq. 21 once �̄?

 is given. This somewhat
defines the -th developmental stage, while the overall learning is embedded
into the cycling process described by Eq. 22.

Of course, the “adult state” is conquered whenever we can determine

Conquering the

adult state.

f? = lim
!1

f?
(�̄

?
) (23)

�? = lim
!1

�?
(f

?
�1), (24)

that yields the solution of Eq. 20 and Eq. 21.
This appealing algorithmic scheme seems to somewhat characterize hu-

man learning. Early studies in developmental psychology indicates that [2, 3]
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Developmental function

the process of learning undergoes quite well defined stages where specific
cognitive skills emerge. Basically, the parallel here is that each stage is
somewhat defined by �̄? that drives the acquisition of the corresponding
skills represented by f?

 .
One might wonder whether can we get around developmental stage. The

following reformulation of learning gives rise to the joint discover of f and
� without needing to pass through separate developmental stages. Let us
define the following developmental function

Can we get

around

developmental

stage?

D(f,�) = k(f,�)k � IX,R(� � f), (25)

where k(f,�)k := ↵kfk+ �k�k. Then learning can be reduced to solving

✓
f?

�?

◆
= argmin

(f,�)2CX
D(f,�) (26)

The satisfaction of �̄(f(x)) = 0 models the interactions of the agent
with the environment. Given and

learned rules

As already pointed out we can alway regard �̄ as the
factorization

�̄(f(x)) = �̄s(f(x)) · �̄l(f(x)),
which states that the rules can either come from the supervision of the
environment (�̄s) or from the learning of the agent (�̄l). The minimization
of the developmental functions is indicating the fundamental principle of
learning which joins the parsimony principle with the maximization of the
mutual information from the random variable that represents the input to
the random variable which represents the rules.

3 Lagrangian developmental learning

Suppose we consider the scalar constraint �̄ given by Eq. 1. Then any factor
�i, which will never become null, can be omitted. Basically, if �1 =  �2
and 8x 2 X :  (x, f(x)) 6= 0 then �1 ⌘ �2. p 2 [0 . .m]

constraints are

given while

m� p are

learned.

Likewise, it makes sense to
assume that p 2 [0 . .m] constraints are explicitly given by the environment
and that only m � p are expected to be learned. Similar analysis can be
drawn when for Eq. ??.

Suppose that f and � are neural networks, that is f(x) = f(w, x) and
�(u, f) = �(f(w, x)). Here u = (u1, . . . , um)0 is the set of weight vector for
each constraint �i. As usual, a simple parsimony index in this case is

k(f,�)k = ↵kwk+ �kuk.
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