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Abstract

The puzzle of computer vision might find new challenging solutions
when we realize that most successful methods are working at image
level, which is remarkably more difficult than processing directly vi-
sual streams. In this paper, we claim that their processing naturally
leads to formulate the motion invariance principle, which enables the
construction of a new theory of learning with convolutional networks.
The theory addresses a number of intriguing questions that arise in
natural vision, and offers a well-posed computational scheme for the
discovery of convolutional filters over the retina. They are driven by
differential equations derived from the principle of least cognitive ac-
tion. Unlike traditional convolutional networks, which need massive
supervision, the proposed theory offers a truly new scenario in which
feature learning takes place by unsupervised processing of video sig-
nals. It is pointed out that an opportune blurring of the video, along
the interleaving of segments of null signal, make it possible to conceive
a novel learning mechanism that yields the minimum of the cognitive
action. Basically, while the theory enables the implementation of novel
computer vision systems, it is also provides an intriguing explanation of
the solution that evolution has discovered for humans, where it looks
like that the video blurring in newborns and the day-night rhythm
seem to emerge in a general computational framework, regardless of
biology.

1 About this document

This paper is submitted as supplemental material related to the IJCAI 2019
submission 5172. In particular, this paper collects the derivations of the
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results presented in the main paper, together with a detailed description of
them, frequently making use of the Einstein convention to simplify the equa-
tions. Moreover, this paper contains additional descriptions and comments
that might be useful for the reader that is interested in additional details on
the topic and on the ideas the are behind the theory that we propose in the
IJCAI paper.

2 Introduction

While the emphasis on a general theory of vision was already the main ob-
jective at the dawn of the discipline [16], it has evolved without a systematic
exploration of foundations in machine learning. When the target is moved
to unrestricted visual environments and the emphasis is shifted from huge
labelled databases to a human-like protocol of interaction, we need to go
beyond the current peaceful interlude that we are experimenting in vision
and machine learning. A fundamental question a good theory is expected
to answer is why children can learn to recognize objects and actions from a
few supervised examples, whereas nowadays supervised learning approaches
strive to achieve this task. In particular, why are they so thirsty for su-
pervised examples? Interestingly, this fundamental difference seems to be
deeply rooted in the different communication protocol at the basis of the
acquisition of visual skills in children and machines.

So far, the semantic labeling of pixels of a given video stream has been
mostly carried out at frame level. This seems to be the natural outcome of
well-established pattern recognition methods working on images, which have
given rise to nowadays emphasis on collecting big labelled image databases
(e.g. [5]) with the purpose of devising and testing challenging machine learn-
ing algorithms. While this framework is the one in which most of nowadays
state of the art object recognition approaches have been developing, we ar-
gue that there are strong arguments to start exploring the more natural
visual interaction that animals experiment in their own environment.

Learning in
wild visual
environments.

This leads to process video instead of image collection, that naturally
leads to a paradigm-shift in the associated processes of learning to see.
The idea of shifting to video is very much related to the growing inter-
est of learning in the wild that has been explored in the last few years (see.
e.g. https://sites.google.com/site/wildml2017icml/).

A crucial problem that has been recognized by Poggio and Anselmi [20]
is the need to incorporate visual invariances into deep nets that go beyond
simple translation invariance that is currently characterizing convolutional
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networks. They propose an elegant mathematical framework on visual in-
variance and enlighten some intriguing neurobiological connections. Overall,
the ambition of extracting distinctive features from vision poses a challeng-
ing task. While we are typically concerned with feature extraction that is
independent of classic geometric transformation, it looks like we are still
missing the fantastic human skill of capturing distinctive features to recog-
nize ironed and rumpled shirts! There is no apparent difficulty to recognize
shirts by keeping the recognition coherence in case we roll up the sleeves, or
we simply curl them up into a ball for the laundry basket. Of course, there
are neither rigid transformations, like translations and rotation, nor scale
maps, that transforms an ironed shirt into the same shirt thrown into the
laundry basket. Is there any natural invariance?

In this paper, we claim that motion invariance is in fact the only in-
variance that we need. The

paradigm-shift
of motion
invariance

Translation and scale invariance, that have been
the subject of many studies, are in fact examples of invariances that can
be fully gained whenever we develop the ability to detect features that are
invariant under motion. If my inch moves closer and closer to my eyes then
any of its representing features that is motion invariant will also be scale
invariant. The finger will become bigger and bigger as it approaches my
face, but it is still my inch! Clearly, translation, rotation, and complex de-
formation invariances derive from motion invariance. Humans life always
experiments motion, so as the gained visual invariances naturally arise from
motion invariance. Animals with foveal eyes also move quickly the focus of
attention when looking at fixed objects, which means that they continually
experiment motion. Hence, also in case of fixed images, conjugate, vergence,
saccadic, smooth pursuit, and vestibulo-ocular movements lead to acquire
visual information from relative motion. We claim that the production of
such a continuous visual stream naturally drives feature extraction, since
the corresponding convolutional filters are expected not to change during
motion. The enforcement of this consistency condition creates a mine of
visual data during animal life. Interestingly, the same can happen for ma-
chines. Of course, we need to compute the optical flow at pixel level so as to
enforce the consistency of all the extracted features. Early studies on this
problem [10], along with recent related improvements (see e.g. [2]) suggests
to determine the velocity field by enforcing brightness invariance. As the
optical flow is gained, it is used to enforce motion consistency on the visual
features. Interestingly, the theory we propose is quite related to the varia-
tional approach that is used to determine the optical flow in [10]. It is worth
mentioning that an effective visual system must also develop features that
do not follow motion invariance. These kind of features can be conveniently
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combined with those that are discussed in this paper with the purpose of
carrying out high level visual tasks.

The convolutional filters are somewhat inspired from the research ac-
tivity reported in [8], where the authors propose the extraction of visual
features as a constraint satisfaction problem, mostly based on information-
based principles and early ideas on motion invariance.

Learning as the
minimization
of the
cognitive
action.

In this paper, the importance of motion invariance is stressed and, more-
over, the solution is derived in the framework of the principle of cognitive
action [4], which gives rise to a time-variant differential equation, where the
Lagrangian coordinates corresponds with the values of the convolutional fil-
ters. It is pointed out that, under causality conditions, the well-position of
the problems arises thanks to the process of video-blurring taking place at
the beginning of learning, which has also been experimented in children. The
learning process can be interpreted in the framework of the minimization of
the cognitive action that offers a self-consistent framework. In particular,
if the video signal is almost periodic [3], then the computational model re-
duces to an asymptotically stable differential equation that yields a sort of
statistical consistency.

3 Driving principles and main results

We are given a retina X, which can formally be regarded as a compact subset
of the plane; for the moment we will not assume any specific shape — any
deformation of the closed disk will serve. The purpose of this paper is that of
analyzing the mechanisms that give rise to the construction of local features
for any pixel x ∈ X of the retina, at any time t. These features, along
with the video itself, can be regarded as visual fields, that are defined on
the retina and on a given horizon of time [0 . . T ]; clearly the analysis of
on-line learning of visual features leads to regard the horizon as [0 . .∞).
As it will be clear in the remainder of the paper, a set of symbols are
extracted at any layer of a deep architecture, so as any pixel — along with
its context — turns out to be represented by the list of symbols extracted at
each layer. The computational process that we define involves the video as
well as appropriate vector fields that are used to express a set of pixel-based
features properly used to capture contextual information. The video, as well
as all the involved fields, are defined on the domain D = X × [0 . . T ]. In
what follows, points on the retina will be represented with two dimensional
vectors x = (x1, x2) on a defined coordinate system on the retina. The
temporal coordinate is usually denoted by t, and, therefore, the video signal

4



x

x

x

x− y

ϕij,y

C

C1

C2

C1 i,x = ϕij,yCj,x−y

Figure 1: Convolutional computation in a deep network. The input is pro-
cessed by convolutional filters which transform C → C1 → C2 . Notice that
the features are extracted at different level on the same pixel x.

on the pair (x, t) is C(x, t). For further convenience we also define the map
Ct : X → Rm so that Ct(x) ≡ C(x, t). The color field can be thought of
as a special field that is characterized by the RGB color components of any
single pixel; in this case m = 3.

Now, we are concerned with the problem of extracting visual features
that, unlike the components of the video, express the information associated
with the pair (x, t) and its spatial context. Basically, one would like to
extract visual features that characterize the information in the neighborhood
of pixel x. Kernel-based

computation
feature
extraction.

A possible way of constructing this kind of features is to define1

C1 i(x, t) =
1

n
+

m−1∑
j=0

∫
X
dy ϕij(x, y, t)Cj(y, t) =

1

n
+ (ϕt × Ct)i(x). (1)

Here we assume that n symbols are generated from the m components of
the video. Notice that the kernel ϕ(x, y, t) is responsible of expressing the
spatial dependencies, and that one could also extend the context in the
temporal dimension. However, the immersion in the temporal dimension
that arises from the formulation given in this paper makes it reasonable to
begin restricting the contextual information to spatial dependencies on the
the retina.

Convolutions
for built-in
incorporation
of space-
invariance.

In addition, it is worth mentioning that the agent is expected to return
a decision also in case of fixed images, which represents a further element

1Throughout the paper we use the Einstein convention to simplify the equations.
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for considering features defined by Eq. (1). The filters ϕ can be regarded as
maps from X×X×[0 . . T ] to Rn,m, where n is the number of the features de-
fined by C1 . It is worth mentioning that whenever ϕ(x, y, t) ϕ(x−y, t) the
above definition reduces to an ordinary spatial convolution. The computa-
tion of C1 i(x, t) yields a field with n features, instead of the three components
of color in the video signal. However, Eq. (1) can be used for carrying out a
piping scheme where a new set of features C2 is computed from C1 . Of course,
this process can be continued according to a deep computational structure
with a homogeneous convolutional-based computation, which yields the fea-
tures Cp at the p convolutional layer. The theory proposed in this paper
focuses on the construction of any of these convolutional layers which are
expected to provide higher and higher abstraction as we increase the number
of layers. The filters ϕ are what completely determines the features C1 i(x, t).
In this paper we formulate a theory for the discovery of ϕ that is based on
three driving principles:

• Optimization of information-based indices
We use an information-based approach to determine ϕ. Beginning
from the color field C, we attach symbol yi ∈ Σ of a discrete vocabulary
to pixel (x, t) with probability C1 i(x, t). MMI and

MaxEnt.
The principle of Maximum

Mutual Information (MMI) is a natural way of maximizing the transfer
of information from the visual source, expressed in terms of mixtures
of colors, to the source of symbols yi ∈ Σ. Clearly, the same idea can
be extended to any layer in the hierarchy. Once we are given a certain
visual environment over a certain time horizon [0, T ] — which can be
extended to [0,+∞) — once the filters ϕ have been defined, the mutual
information turns out to be a functional of ϕ, that is denoted as I(ϕ).
However, in the following, it will be shown that the more general view
behind the the maximum entropy principle (MaxEnt) offers a better
framework for the formulation of the theory.

• Motion invariance
While information-based indices optimize the information transfer from
the input source C to the symbols, the major cognitive issues of in-
variances are not covered. The same object, which is presented at
different scales and under different rotations does require different rep-
resentations, which transfers all the difficulty of learning to see to the
subsequent problems interwound with language interpretation. Hence,
it turns out that the most important requirement that the visual field
C1 must fulfill is that of exhibiting the typical cognitive invariances
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Figure 2: Motion invariance in the feature extraction process. The sym-
bol y1, that defines a features at the beginning of motion (t = 0 s), must
be coherently extracted during the movement — see the enforcement of the
coherence requirement at t = 1, 2 s.

that humans and animals experiment in their visual environment. We
claim that there is only one such fundamental invariance, namely that
of producing the same representation for moving pixels. Classic

invariances as
motion
invariance.

This incor-
porates classic scale and rotation invariances in a natural way, which
is what is experimented in newborns. Objects comes at different scale
and with different rotations simply because children experiment their
movement and manipulation. As we track moving pixels, we enforce
consistent labeling, which is clearly far more general than enforcing
scale and rotation invariance. The enforcement of motion constraint
is the key for the construction of a truly natural invariance. It will
be pointed out that motion invariance can always be expressed as the
minimization of a functional M(ϕ).

• Parsimony principle
Like any principled formulation of learning, we require the filters to
obey the parsimony principle. Amongst the philosophical implications,
it also favors the development of a unique solution. The development
of filters that are consistent with the above principles requires the con-
struction of an on-line learning scheme, where the role of time becomes
of primary importance. The main reason for such a formulation is the
need of imposing the development of motion invariance features. Given
the filters ϕ, there are two parsimony terms, one P (ϕ), that penalizes
abrupt spatial changes, and another one, K(ϕ) that penalizes quick
temporal transitions.

Minimization
of the
cognitive
action.

Overall, the process of learning is regarded as the minimization of the cog-
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nitive action

A(ϕ) = −I(ϕ) + λMM(ϕ) + λPP(ϕ) + λKK(ϕ), (2)

where λM , λP , λK are positive multipliers. While the first and third princi-
ples are typically adopted in classic unsupervised learning, motion invariance
does characterize the approach followed in this paper. Of course, there are
visual features that do not obey the motion invariance principle. Animals
easily estimate the distance to the objects in the environment, a property
that clearly indicates the need for features whose value do depend on mo-
tion. The perception of vertical visual cues, as well as a reasonable estimate
of the angle with respect to the vertical line also suggests the need for fea-
tures that are motion dependent. Since the above action functional A(ϕ)
depends on the choice of the multipliers λM , λP , λK , it is quite clear that
there is a wide range of different behavior that depend on the relative weight
that is given to the terms that compose the action. As it will be shown in
the following, the minimization of A(ϕ) can be given an efficient computa-
tional scheme only if we give up to optimize the information transfer in one
single step and rely on a piping scheme that clearly reminds deep network
architectures. While this paper focuses on unsupervised learning, it is worth
mentioning that the purpose of the agent can naturally be incorporated into
the minimization of the cognitive action given by Eq (15).

Now, we provide arguments to support the principled framework of this
paper. Like for human interaction, visual concepts are expected to be ac-
quired by the agents solely by processing their own visual stream along with
human supervisions on selected pixels, instead of relying on huge labelled
databases. In this new learning environment based on a video stream, any in-
telligent agent willing to attach semantic labels to a moving pixel is expected
to take coherent decisions with respect to its motion. Basically, any label at-
tached to a moving pixel has to be the same during its motion. Hence, video
streams provide a huge amount of information just coming from imposing
coherent labeling, which is likely to be the primary information associated
with visual perception experienced by any animal. Roughly speaking, once
a pixel has been labeled, the constraint of coherent labeling virtually offers
tons of other supervisions, that are essentially ignored in most machine learn-
ing approaches working on big databases of labeled images. It turns out that
most of the visual information to perform semantic labeling comes from the
motion coherence constraint, which explains the reason why children learn
to recognize objects from a few supervised examples. The linguistic process
of attaching symbols to objects takes place at a later stage of children de-
velopment, when he has already developed strong pattern regularities. We
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conjecture that, regardless of biology, the enforcement of motion coherence
constraint is a high level computational principle that plays a fundamental
role for discovering pattern regularities. Concerning the MMI principle, it
is worth mentioning that it can be regarded as a special case of the MaxEnt
principle when the constraints correspond with the soft-enforcement of the
conditional entropy, where the weight of its associated penalty is the same
as that of the entropy (see e.g. [17]). Notice that while the maximization
of the mutual information nicely addresses the need of maximizing the in-
formation transfer from the source to the selected alphabet of symbols, it
does not guarantee temporal consistency of this attachment. Basically, the
optimization of the index is also guaranteed by using the same symbol for
different visual cues. Motion consistency faces this issue for any pixel, even
if it is fixed. As for the adoption of the parsimony principle in visual envi-
ronments, we can use appropriate functionals to enforce both the spatial and
temporal smoothness of the solution. While the spatial smoothness can be
gained by penalizing solutions with high spatial derivatives — including the
zero-order derivatives — temporal smoothness arises from the introduction
of kinetic energy terms which penalizes high velocity and, more generally,
high temporal derivatives.

Since the optimization is generally formulated over arbitrarily large time
horizons, all terms are properly weighted by a discount factor that leads
to “forget” very old information in the agent life. This contributes to a
well-position of the optimization problem and gives rise to dissipation pro-
cesses [4].

The agent behavior turns out to be driven by the minimization of an ap-
propriate functional that combines the all above principles. The main result
in this paper is that this optimization can be interpreted in terms of laws of
nature expressed by a temporal differential equation. When regarding the
retina as a discrete structure, we can compute the probability that at time t,
in pixel x, the emitted symbol is yi by 1/n+ϕiky(t)Ck(x−y)(t). Here, for any
pair of symbols yk, yi, and for any pixel with position z, in the coordinate
system defined by x, the filter ϕikz is the temporal function that the agent
is expected to learn from the visual environment. Basically, the process of
learning consists of determining

ϕ̂ = arg min
ϕ
A(ϕ).

In Section 5 we prove that there is no local solution to this problem, since
any stationary point of this functional turns out to be characterized by the
integro-differential equation (14). We also show that we can naturally gain a
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local solution when introducing focus of attention mechanisms. Its purpose
is to provide a weighed contribution of the single terms of the action by
attaching higher weights to pixels where the agent is focussing attention.
Under this re-stating of the problem, we prove that the minimum of the
cognitive action corresponds with the discovery of the filters ϕijy that satisfy
the time-variant differential equation Fourth-order

Euler-Lagrange
model of
learning.

q(4)(t)+A(t)q(3)(t)+B(t)q(2)(t)+C(t)q(1)(t)+D(t)q(t)+F (t, q(t)) = 0, (3)

where q is the linearized vector of ϕijx, matrices A, B, C, D, F depend on
the time through the video signal and the trajectory of the focus of attention,
and F is a bounded nonlinear vector. The subsequent analysis will provide
clear evidence on the need of a fourth-order differential equation for the
determination of the filters. Equation (3) has quite a complex structure,
since it also contains the non-linear term F (t, q(t)) that, however, as it will
be shown is piece-wise linear. It is shown that the dependence on time of the
coefficients is inherited by the time-variance of the video. Hence, the solution
of the differential equation involves dynamics whose spectrum is induced by
the video. The analysis carried out in the paper shows how can we attack
the problem either in the case in which the agent is expected to learn from a
given video stream with the purpose to work on subsequent text collections,
or in the case in which the agent lives in a certain visual environment,
where there is no distinction between learning and test phases. Basically,
it is pointed out that only the second case leads to a truly interesting and
novel result.

Learning by
blurring
trajectories.

In particular, the solution of the above differential equation is strongly
facilitated when performing an initial blurring of the video that lasts until
all the visual statistical cues are likely been presented to the agent. This
very much resembles early stages of developments in newborns [18]. In so
doing, at the beginning, the coefficients of Eq. (3) are nearly constant. In
this case, the analysis of the equations leads to conclude that only a very
slow dynamics takes place, which means that all the derivatives of q are
nearly null and, consequently, q is nearly constant. This strongly facilitates
the numerical solutions and, in general, the computational model turns out
to be very robust, a property that is clearly welcome also in nature. As time
goes by, while the blurring process increases the visual acuity the coefficients
of the differential equation begin to change with velocity that is connected
with motion. However, in the meantime, the values of the filters have reached
a nearly-constant value. Basically, the learning trajectories are characterized
by the mentioned nearly-null derivatives, a condition that, again strongly
facilitates the well-position of the problem.
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A further intuitive reason for a slow dynamics of q(t) is also a conse-
quence of visual invariant features. For example, when considering a moving
car and another one of the same type parked somewhere in the same frame,
during the motion interval, the processing over the parked car would benefit
from a nearly constant solution. This suggests also searching for the same
constant solution on the corresponding moving pixel. When regarding the
problem of learning in a truly on-line mode, the previous differential equa-
tion can be considered as the model for computing ϕijy given the Cauchy
conditions. Of course, the solution is affected by these initial conditions.
Moreover, as it will be clear in the reminder of the paper, the previous dif-
ferential equations yield the minimization of the action under appropriate
border conditions that correspond with forcing a trajectory that satisfies the
condition of nearly-null of the first, second, and third derivatives of q. When
joined with the blurring process this leads to a causal dynamics driven by
initial conditions that are compatible with boundary conditions imposed at
any time of the agent’s life.

The puzzle of extracting robust cues from visual scenes has only been
partially faced by nowadays successful approaches to computer vision. The
remarkable achievements of the last few years have been mostly based on the
accumulation of huge visual collections gathered by crowdsourcing. An ap-
propriate set up of convolutional networks trained in the framework of deep
learning has given rise to very effective internal representations of visual
features. They have been successfully used by facing a number of relevant
classification problems by transfer learning. Clearly, this approach has been
stressing the power of deep learning when combining huge supervised collec-
tions with massive parallel computation. In this paper, we argue that while
stressing this issue we have been facing artificial problems that, from a pure
computational point of view, are likely to be significantly more complex than
natural visual tasks that are daily faced by animals. In humans, the emer-
gence of cognition from visual environments is interwound with language.
This often leads to attack the interplay between visual and linguistic skills by
simple models that, like for supervised learning, strongly rely on linguistic
attachment. However, when observing the spectacular skills of the eagle that
catches the pray, one promptly realizes that for an in-depth understanding
of vision, that likely yields also an impact in computer implementation, one
should begin with a neat separation with language! This paper is mostly
motivated by the curiosity of addressing a number of questions that arise
when looking at natural visual processes. While they come from natural
observation, they are mostly regarded as general issues strongly rooted in
information-based principles, that we conjecture are of primary importance
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also in computer vision.
The theory proposed in this paper offers a computational perspective of

vision regardless of the “body” which sustains the processing. In particu-
lar, the theory addresses some fundamental questions, reported below, that
involve vision processes taking place in both animals and machines.

Q1 How can animals conquer visual skills without requiring “intensive su-
pervision”?
Recent remarkable achievements in computer vision are mostly based
on tons of supervised examples — of the order of millions! This does
not explain how can animals conquer visual skills with scarse “super-
vision” from the environment. The call for

theories of
unsupervised
learning.

Hence, there is plenty of evidence and
motivations for invoking a theory of truly unsupervised learning ca-
pable of explaining the process of extraction of features from visual
data collections. While the need for theories of unsupervised learning
in computer vision has been advocated in a number of papers (see
e.g. [23], [15],[21], [9]), so far, the powerful representations that arise
from supervised learning, because of many recent successful applica-
tions, seem to attract much more interest. While information-based
principles could themselves suffice to construct visual features, the
absence of any feedback from the environment make those methods
quite limited with respect to supervised learning. Interestingly, the
claim of this paper is that motion invariance offers a huge amount
of free supervisions from the visual environment, thus explaining the
reason why humans do not need the massive supervision process that
is dominating feature extraction in convolutional neural networks.

Q2 How can animals gradually conquer visual skills in a truly temporal-
based visual environment?
Animals, including primates, not only receive a scarse supervision, but
they also conquer visual skills by living in their own visual environ-
ment. This is gradually achieved without needing to separate learning
from test environments. At any stage of their evolution, it looks like
they acquire the skills that are required to face the current tasks. On
the opposite, most approaches to computer vision do not really grasp
the notion of time. The typical ideas behind on-line learning do not
necessarily capture the natural temporal structure of the visual tasks.
Time plays a crucial role in any cognitive process. One might believe
that this is restricted to human life, but more careful analyses lead
us to conclude that the temporal dimension plays a crucial role in
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the well-positioning of most challenging cognitive tasks, regardless of
whether they are faced by humans or machines. Interestingly, while
many people struggle for the acquisition of huge labeled databases,
the truly incorporation of time leads to a paradigm shift in the in-
terpretation of the learning and test environment. Visual stream

can easily
surpass any
large image
collection.

In a sense, such
a distinction ceases to apply, and we can regard unrestricted visual
collections as the information accumulated during all the agent life,
that can likely surpass any attempt to collect image collection. The
theory proposed in this paper is framed in the context of agent life
characterized by the ordinary notion of time, which emerges in all its
facets. We are not concerned with huge visual data repositories, but
merely with the agent life in its own visual environments.

Q3 Can animals see in a world of shuffled frames?
One might figure out what human life could have been in a world
of visual information with shuffled frames. Could children really ac-
quire visual skills in such an artificial world, which is the one we are
presenting to machines? Notice that in a world of shuffled frames,
a video requires order of magnitude more information for its storing
than the corresponding temporally coherent visual stream. This is a
serious warning that is typically neglected; any recognition process is
remarkably more difficult when shuffling frames, which clearly indi-
cates the importance of keeping the spatiotemporal structure that is
offered by nature. This calls for the formulation of a new theory of
learning capable of capturing spatiotemporal structures. Basically, we
need to abandon the safe model of restricting computer vision to the
processing of images. The reason for formulating a theory of learn-
ing on video instead of on images is not only rooted in the curiosity
of grasping the computational mechanisms that take place in nature.

In modern
computer
vision we have
been facing a
problem that is
more difficult
then that
offered by
nature.

It looks like that, while ignoring the crucial role of temporal coher-
ence, the formulation of most of nowadays current computer vision
tasks leads to tackle a problem that is remarkably more difficult than
the one nature has prepared for humans! We conjecture that animals
could not see in a world of shuffled frames, which indicates that such
an artificial formulation might led to a very hard problem. In a sense,
the very good results that we already can experiment nowadays are
quite surprising, but they are mostly due to the stress of the computa-
tional power. The theory proposed in this paper relies of the choice of
capturing temporal structures in natural visual environments, which
is claimed to simplify dramatically the problem at hand, and to give
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rise to lighter computation.

Q4 How can humans attach semantic labels at pixel level?
Humans provide scene interpretation thanks to linguistic descriptions.
This requires a deep integration of visual and linguistic skills, that are
required to come up with compact, yet effective visual descriptions.
However, amongst these high level visual skills, it is worth mention-
ing that humans can attach semantic labels to a single pixel in the
retina. Pixel-based

fundamental
primitives.

While this decision process is inherently interwound with a
certain degree of ambiguity, it is remarkably effective. The linguistic
attributes that are extracted are related to the context of the pixel
that is taken into account for label attachment, while the ambiguity
is mostly a linguistic more than a visual issue. The theory proposed
in this paper addresses directly this visual skill since the labels are
extracted for a given pixel at different levels of abstraction. Unlike
classic convolutional networks, there is no pooling; the connection be-
tween the single pixels and their corresponding features is kept also
when the extracted features involve high degree of abstraction, that is
due to the processing over large contexts. The focus on single pixels
allows us to go beyond object segmentation based sliding windows,
which somewhat reverses the pooling process. Instead of dealing with
object proposals [26], we focus on the attachment of symbols at sin-
gle pixels in the retina. The bottom line is that human-like linguistic
descriptions of visual scenes is gained on top of pixel-based feature
descriptions that, as a byproduct, must allow us to perform semantic
labeling. Interestingly, there is more; as it will be shown in the fol-
lowing, there are in fact computational issues that lead us to promote
the idea of carrying our the feature extraction process while focussing
attention on salient pixels.

Q5 Why are there two mainstream different systems in the visual cortex
(ventral and dorsal mainstream)?
It has been pointed out that the visual cortex of humans and other pri-
mates is composed of two main information pathways that are referred
to as the ventral stream and dorsal stream [6]. Is motion

invariance the
fundamental
functional
property that
differentiate
dorsal and
ventral
streams?

The traditional dis-
tinction distinguishes the ventral “what” and the dorsal “where/how”
visual pathways, so as the ventral stream is devoted to perceptual anal-
ysis of the visual input, such as object recognition, whereas the dorsal
stream is concerned with providing motion ability in the interaction
with the environment. The enforcement of motion invariance is clearly
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conceived for extracting features that are useful for object recognition
to assolve the “what” task. Of course, neurons with built-in motion
invariance are not adeguate to make spatial estimations. Depending
on the the value of the λM parameter, the theory presented in this pa-
per leads to interpret the computational scheme of “ventral neurons”,
that are appropriate for recognition — high value of λM — or “dorsal
neurons” that are more appropriate for environmental interactions —
λM = 0. The model behind the learning of the filters indicates the
need to access to velocity estimation, which is consistent with neu-
roanatomical evidence.

Q6 Why is the ventral mainstream organized according to a hierarchical
architecture with receptive fields?
Beginning from early studies by Hubel and Wiesel [11], neuroscien-
tists have gradually gained evidence of that the visual cortex presents
a hierarchical structure and that the neurons process the visual infor-
mation on the basis of inputs restricted to receptive field. Is there a
reason why this solution has been developed? We can promptly realize
that, even though the neurons are restricted to compute over receptive
fields, deep structures easily conquer the possibility of taking large con-
texts into account for their decision. Is it there a

computational
framework to
motivates
hierarchical
architectures?

Is this biological solution driven
by computational laws of vision? In this paper we provide evidence of
the fact that receptive fields do favor the acquisition of motion invari-
ance which, as already stated, is the fundamental invariance of vision.
Since hierarchical architectures is the natural solution for developing
more abstract representations by using receptive fields, it turns out
that motion invariance is in fact at the basis of the biological struc-
ture of the visual cortex. The computation at different layers yields
features with progressive degree of abstraction, so as higher computa-
tional processes are expected to use all the information extracted in
the layers.

Q7 Why do animals focus attention?
The retina of animals with well-developed visual system is organized
in such a way that there are very high resolution receptors in a re-
stricted area, whereas lower resolution receptors are present in the
rest of the retina. Is focus of

attention
driven by
computational
laws?

Why is this convenient? One can easily argue that
any action typically takes place in a relatively small zone in front of
the animals, which suggests that the evolution has led to develop high
resolution in a limited portion of the retina. On the other hand, this
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leads to the detriment of the peripheral vision, that is also very im-
portant. In addition, this could apply for the dorsal system whose
neurons are expected to provide information that is useful to support
movement and actions in the visual environment. The ventral main-
stream, with neurons involved in the “what” function does not seem
to benefit from foveal eyes. From the theory proposed in this paper,
the need of foveal retinas is strongly supported for achieving efficient
computation for the construction of visual features. When looking at
Eq. (3) it becomes also clear that quick eye movements with respect
to the dynamics of change of the weights of the filters dramatically
simplifies the computation.

Q8 Why do foveal animals perform eye movements?
Human eyes make jerky saccadic movements during ordinary visual ac-
quisition. One reason for these movements is that the fovea provides
high-resolution in portions of about 1, 2 degrees. Because of such a
small high resolution portions, the overall sensing of a scene does re-
quire intensive movements of the fovea. Hence, the foveal movements
do represent a good alternative to eyes with uniformly high resolution
retina. On the other hand, the preference of the solution of foveal
eyes with saccadic movements is arguable, since while a uniformly
high resolution retina is more complex to achieve than foveal retina,
saccadic movements are less important. The information-based theory
presented in this paper makes it possible to conclude that foveal retina
with saccadic movements is in fact a solution that is computationally
sustainable and very effective.

Q9 Why does it take 8-12 months for newborns to achieve adult visual
acuity?
There are surprising results that come from developmental psychology
on what a newborn see. Charles Darwin came up with the following
remark:

It was surprising how slowly he acquired the power of fol-
lowing with his eyes an object if swinging at all rapidly; for
he could not do this well when seven and a half months old.

Is there any
computational
basis of video
blurring?

At the end of the seventies, this early remark was given a technically
sound basis [24]. In the paper, three techniques, — optokinetic nys-
tagmus (OKN), preferential looking (PL), and the visually evoked po-
tential (VEP) — were used to assess visual acuity in infants between
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birth and 6 months of age. More recently, the survey by Braddick
and Atkinson [18] provides an in-depth discussion on the state of the
art in the field. It is clearly stated that for newborns to gain adult
visual acuity, depending on the specific visual test, several months are
required. Is the development of adult visual acuity a biological issue
or does it come from higher level computational laws? This paper
provides evidence to conclude that the blurring process taking place
in newborns is in fact a natural strategy to optimize the cognitive ac-
tion defined by Eq. 15 under causality requirements. Moreover, the
strict limitations both in terms of spatial and temporal resolution of
the video signal, according to the theory, help conquering visual skills.

Q10 Causality and Non Rapid Eye Movements (NREM) sleep phases
Computer vision is mostly based on huge training sets of images,
whereas humans use video streams for learning visual skills. Notice
that because of the alternation of the biological rhythm of sleep, hu-
mans somewhat process collections of visual streams pasted with re-
laxing segments composed of “null” video signal. This happens mostly
during NREM phases of sleep, in which also eye movements and con-
nection with visual memory are nearly absent. Interestingly, the Rapid
Eye Movements (REM) phase is, on the opposite, similar to ordinary
visual processing, the only difference being that the construction of vi-
sual features during the dream is based on the visual internal memory
representations [22]. As a matter of fact, the process of learning the
filters experiments an alternation of visual information with the reset
of the signal. Day-night

rhythm and
relaxation of
system
dynamics.

We provide evidence to claim that such a relaxation com-
ing from the reset of the signal nicely fits the purpose of optimizing an
overall optimization index based on the previously stated principles.
In particular, we point out that periodic resetting of the visual infor-
mation favors the optimization under causality requirements. Hence,
the theory offers an intriguing interpretation of the role of eye move-
ment and of sleep for the optimal development of visual features. In a
sense, the theory offers a general framework for interpreting the impor-
tance of the day-night rhythm in the development of visual features.
When combined with newborns blurring, it contributes to a relaxation
dynamical process that turns out to be of fundamental importance for
the final purpose of optimization of the visual constraints.
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4 Visual constraints

We can provide an interpretation of the processing carried out by our visual
agent in the framework of information theory. The basic idea is that the
agent produces a set of symbols from a given alphabet while processing the
video.

MMI principle. Let us define random variables X and T , which take
into account the spatial and temporal probability distribution, while Y is
used to specify the probability distribution over the possible symbols, and
F to specify the frames. In order to assess the information transfer from
X,T, F to Y we consider the corresponding mutual information I. Clearly,
it is zero whenever random variable Y is independent of X, T and F . The
mutual information can be expressed by

I(Y ;X,T, F ) = S(Y )− S(Y | X,T, F ). (4)

The conditional entropy S(Y | X,T, F ) is given by

S(Y | X,T, F ) = −
∫

Ω

n∑
i=1

dPX,T,F pi log pi (5)

where pi is the conditional probability of Y conditioned to the values of X, T
and F , dPX,T,F is the joint measure of the variable X,T, F , and Ω is a Borel
set in the (X,T, F ) space. The agent generates symbols yi, i = 1, . . . , n
along with the corresponding probabilities on the basis of input source that
is based on m symbols that are still given along with their probability. Now,
let us make two fundamental assumptions:

• The conditional probability pi(x, t, C), where C is a realization of ran-
dom variable F , is given by the i-th feature field C1 i(x, t).

• Random variables X,T, F follows the ergodic-like assumption, Ergodic
assumption:
probabilistic
indices emerge
while living in
“wild visual
environments”

so as
we can perform the replacement:∫

Ω
dPX,T,F −→

∫
D
dµ.

In what follows we will assume that the measure dµ(x, t) is f(x, t) dx dt.
Moreover, we assume that f(x, t) is factorized according to

f(x, t) = g(x− a(t))h(t), (6)
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where a(t) is the trajectory of the focus of attention and h is monotonic
increasing function. This ergodic translation of the probabilistic measure
suggests that we pay attention where the eye is focussing attention, that is
in the neighborhood of a(t): This can be achieved by means of a function
g(x − a(t)) peaked on the focus of attention. Ergodic

translation:
more weight on
pixels of focus
of attention
and on “recent
visual cues.”

Such a trajectory is assumed
to be available but, as pointed out in Section 8, it can also be determined
in the overall framework of the theory presented in this paper. In addition,
ergodicity here means that we pay attention mostly on “recent visual life.”
Clearly, this very much depends on the choice of h. It is quite obvious
that the measure dµ = g(x− a(t))h(t)dxdt only makes sense provided that
the function h does not change significantly during statistically significant
portions of visual environments. Whenever these two assumptions hold, we
can rewrite the conditional entropy defined by Eq. (5) as

S(Y | X,T, F ) = −
∫
D
dµ(x, t)

n∑
i=1

C1 i(x, t) logC1 i(x, t). (7)

Similarly for the entropy of the variable Y we can write

S(Y ) = −
n∑
i=1

Pr(Y = yi) log Pr(Y = yi). (8)

Now, if we use the law of total probability to express Pr(Y = yi) in terms
of the conditional probability pi and use the above assumptions we get

Pr(Y = yi) =

∫
Ω
dPX,T,F pi =

∫
D
dµ(x, t)C1 i(x, t). (9)

Then

S(Y ) = −
n∑
i=1

(∫
D
dµ(x, t)C1 i(x, t)

)
log
(∫

D
dµ(x, t)C1 i(x, t)

)
. (10)

Finally the mutual information becomes Mutual
information
based on
probabilities
C1 i(x, t).

I(Y ;X,T, F ) =
n∑
i=1

(∫
D
dµC1 i logC1 i −

∫
D
dµC1 i · log

∫
D
dµC1 i

)
. (11)

Of course, ∀x, t : C1 i(x, t) is subject to the probabilistic constraints∑
iC1 i(x, t) = 1 (normalization)

0 ≤ C1 i(x, t) ≤ 1 (positivity)
(12)
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MaxEnt principle. A more general
view: visual
constraint
satisfaction
while
maximizing the
entropy.

An agent driven by the MMI principle can carry
out an unsupervised learning process aimed at discovering the symbols de-
fined by random variable Y . Interestingly, when the constraints are given
a soft-enforcement, the MMI principle has a nice connection with the Max-
Ent principle [13]: The maximization of the mutual information corresponds
with the maximization of the entropy while softly-enforcing the constraint
that the conditional entropy is null. While both the entropy terms get the
same absolute value of the weight, once can think of different implementa-
tions of the MaxEnt principle that very much depend on the special choice
of the weights. When shifting towards the MaxEnt principle one is primar-
ily interested in the satisfaction of the conditional entropy constraint, while
bearing in mind that the maximization of the entropy protects us from the
development of trivial solutions (see [7] pp. 99–103 for further details). Of
course, the probabilistic normalization constraints stated by Eq. 12 comes
along with the conditional entropy constraint. The computational mech-
anism that drives the discovery of the symbols described in this paper is
based on MaxEnt, but instead of limiting the unsupervised process to the
fulfillment of the conditional entropy constraint, we enrich the model with
other environmental constraints.

First, we notice that the map which originates the symbol production
mechanism has not ben given any guideline. The conditional entropy con-
straint only involves the value taken by C1 i which depends on ϕij(x, t), but
there is no structural enforcement on the function ϕij ; its spatiotemporal
changes are ignored. Spatiotemporal

regularization
can be
interpreted as
constraints in
the framework
of MaxEnt.

Ordinary regularization issues suggest to discover func-
tions ϕij such that

λPP+λKK =
λP
2

∫
D
dtdx h(t)(Pxϕij(x, t))

2+
λK
2

∫
D
dtdx h(t)(Ptϕij(x, t))

2,

is “small”, where Px, Pt are spatial and temporal differential operators, and
λP , λK are non-negative reals. Notice that the ergodic translation of dµ, in
this case, only involves the temporal factor h(t).

Second, as already pointed out, many relevant visual features need to be
motion invariant. Just like an ideal fluid is adiabatic — meaning that the
entropy of any particle fluid remains constant as that the particles move
about in space — in a video, once we have assigned the correct symbol to
a pixel, due to the fact that the movement of object is continuous, that
symbol is conserved as the object moves on the retina. If we focus attention
on a the pixel x at time t, which moves according to the trajectory x(t)
then C1 (x(t), t) = c, being c a constant. This “adiabatic” condition is thus
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expressed by the condition dC1 /dt = 0, which yields

∂tC1 i + vj∂jC1 i = 0, (13)

where v : D → R2 is the velocity field that we assume that is given, and ∂k
is the partial derivative with respect to xk. When replacing C1 i as stated by
Eq. (1) we get Motion

invariance is a
linear
constraint in
the filter
functions ϕij .

∫
X
dy
(
∂tϕijCj + ϕij∂tCj + vk∂kϕijCj

)
= 0,

which holds for any (t, x) ∈ D. Notice that this constraint is linear in
the field ϕ. This can be interpreted by stating that learning under motion
invariance consists of determining elements of the kernel of the function
M (ϕij) :=

∫
X dy

(
∂tϕijCj + ϕij∂tCj + vk∂kϕijCj

)
. A discussion on the

problem of determining the kernel of M is given in [7].

5 Cognitive action

MaxEnt as the
minimum of
the cognitive
action.

In the previous section we have proposed a method to determine the
filters ϕij based on the MaxEnt principle. We provide a soft-interpretation
of the constraints, so as the adoption of the principle corresponds with the
minimization of the “action”

A0(ϕ) =

∫
D
dµC1 i(ϕ) · log

∫
D
dµC1 i(ϕ)− λC

∫
D
dµC1 i(ϕ) logC1 i(ϕ)

+ λ1

∫
D
dµ
( n∑
i=1

C1 i(ϕ)− 1
)2
− λ0

∫
D
dµC1 i(ϕ) · [C1 i(ϕ) < 0]

+
λP
2

∫
D
dtdx h(t)(Pxϕij(x, t))

2 +
λK
2

∫
D
dtdx h(t)(Ptϕij(x, t))

2

+ λM

∫
D
dµ
(
∂tC1 i(ϕ) + vj∂jC1 i(ϕ)

)2
,

(14)

where the notation C1 i(ϕ) is used to stress the fact that C1 i depends func-
tionally on the filters ϕ. Here the first line is the negative of the mutual
information and the constants λC , λ1, λ0, λP , λK , and λM are positive mul-
tipliers. In the above formula, and in what follows we will use consistently
Einstein summation convention.

We notice that the mutual information (the first line) is rather involved,
and it becomes too cumbersome to be used with a principle of least action.
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However, if we give up to attach the information-based terms the interpre-
tation in terms of bits, we can rewrite the entropies that define the mutual
information as

S(Y | X,T, F )→ −
∫
D
dµC1 2

i and S(Y )→ −
(∫

D
dµC1 i

)2
.

Interestingly, this replacement does retain all the basic properties on the sta-
tionary points of the mutual information and, at the same time, it simplifies
dramatically the overall action, which becomes

A(ϕ) =
1

2

(∫
D
dµC1 i(ϕ)

)2
− λC

2

∫
D
dµC1 2

i (ϕ)

+
λ1

2

∫
D
dµ
(n−1∑
i=0

C1 i(ϕ)− 1
)2
− λ0

∫
D
dµC1 i(ϕ) · [C1 i(ϕ) < 0]

+
λP
2

∫
D
dtdx h(t)(Pxϕij)

2 +
λK
2

∫
D
dtdx h(t)(Ptϕij)

2

+
λM
2

∫
D
dµ
(
∂tC1 i(ϕ) + vj∂jC1 i(ϕ)

)2
,

(15)

We shall — form now on — assume that the fields C1 i are extracted by con-
volution, so that C1 i(x, t) = 1/n +

∫
ϕij(x − y, t)Cj(y, t) dy. In order to be

sure to preserve the commutativity of convolution — a property that in gen-
eral holds when the integrals are extended to the entire plane — we have
to make assumptions on the retina and on the domain on which the fil-
ters are defined. First of all assume that X = [0 . . L] × [0 . . L] and define
X4 := [−L . . L]× [−L . . L]. If the video has support on X, then it is conve-
nient to assume that ϕ has spatial support on X4; in doing so the commuta-
tive property of the convolution is maintained if we perform the integration
on X4. Hence, we have

C1 i(x, t) =
1

n
+

∫
X4

ϕij(x− y, t)Cj(y, t) dy =
1

n
+

∫
X4

ϕij(y, t)Cj(x− y, t) dy.
(16)

Expression of
the variation of
the action.

In what follows we assume that D ← X4 × [0 . . T ].
The Euler-Lagrange equation of the action arises from δA(ϕ)/δϕij(x, t) =

0. So we need to take the variational derivative of all the terms of action
in Eq. (15). In the following calculation, we will assume that dµ(x, t) =
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f(x, t) dx dt. The first term yields∫
D
C1 k dµ ·

δ

δϕij(x, t)

∫
dz dτ dy f(z, τ)ϕkj(y, τ)Cj(z − y, τ)

=

∫
dz f(z, t)Cj(z − x, t) ·

∫
dz dτ dξ f(z, τ)ϕik(ξ, τ)Ck(z − ξ, τ);

(17)

while the second term gives

δ

δϕij(x, t)

1

2

∫
D
C1 2
k(z, τ)f(z, τ) dz dτ =

∫
X
dz f(z, t)C1 i(z, t)Cj(z − x, t)

=

∫
dξ
(∫

dz f(z, t)Cj(z − x, t)Ck(z − ξ, t)
)
ϕik(ξ, t).

(18)

The variation of the third term similarly yields

n−1∑
m=0

∫
dξ
(∫

dz f(z, t)Cj(z − x, t)Ck(z − ξ, t)
)
ϕmk(ξ, t)

−
∫
dz f(z, t)Cj(z − x, t).

(19)

The variation of the terms that implements positivity is a bit more tricky:

δ

δϕij(x, t)

∫
D
C1 k · [C1 k < 0] dµ =

∫
δC1 k(z, τ)

δϕij(x, t)
· [C1 k(z, τ) < 0]f(z, τ) dz dτ

+

∫
C1 k(z, τ) · δ[C

1 k(z, τ) < 0]

δϕij(x, t)
f(z, τ) dz dτ.

However, the second term is zero since∫
C1 k(z, τ)δ[C1 k(z, τ) < 0]f(z, τ) dz dτ =

∫
dz dτ dξϕkm(ξ, τ)C(z − ξ, τ)

·
(

[

∫
dξ ϕkm(ξ, τ)Cm(z − ξ, τ) + ε

∫
dξ δϕkm(ξ, τ)Cm(z − ξ, τ) < 0]

− [

∫
dξ ϕkm(ξ, τ)Cm(z − ξ, τ) < 0]

)
.

The difference of the two Iverson’s brakets is always zero unless the epsilon-
term makes the argument of the first braket have an opposite sign with
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respect to the second. Since ε is arbitrary small, this can only happen if∫
dξ ϕkm(ξ, τ)Cm(z−ξ, τ) = 0. Thus in either cases the whole term vanishes.

Hence, we get

δ

δϕij(x, t)

∫
D
C1 k · [C1 k < 0] dµ =

∫
dz f(z, t)Cj(z − x, t)[C1 i(z, t) < 0]. (20)

Finally, the variation of the last term is a bit more involved and yields (see
Appendix A):∫

dξ
(
Ξjk(x, ξ, t)∂

2
t + Πjk(x, ξ, t)∂t + Υjk(x, ξ, t)

)
ϕik(ξ, t), (21)

where

Ξjk(x, ξ, t) = −
∫
D
dz f(z, t)Cj(z − x, t)Ck(z − ξ, t);

Πjk(x, ξ, t) =

∫
D
dz
(
f(z, t)DtCj(z − x, t)Ck(z − ξ, t)

− ∂t(f(z, t)Cj(z − x, t)Ck(z − ξ, t))
+ f(z, t)Cj(z − x, t)Ck(z − ξ, t)

)
;

Υjk(x, ξ, t) =

∫
D
dz
(
f(z, t)DtCj(z − x, t)DtCk(z − ξ, t)

− ∂t(f(z, t)Cj(z − x, t)Ck(z − ξ, t))
)
.

(22)

In doing all this calculations we have used the commutative property of
the convolution as stated in Eq. (16), if we had not done this we would
have obtained, in some cases, expressions with an higher degree of space
non-locality (i.e. with more than one integral over X4). Euler-lagrange

integro-
differential
equations for
the cognitive
action: they
are neither
local in time,
nor in space!

Then the Euler-
Lagrange equations reads:

λKP
?
t (h(t)Ptϕij(x, t)) + λPh(t)P ?xPxϕij(x, t)

+ cj(x, t) ·
(∫

dτ dξ ck(ξ, τ)ϕik(ξ, τ)− ν
)
− β

∫
dξ c2

jk(x, ξ, t)ϕik(ξ, t)

+ ν
n∑

m=1

∫
dξ c2jk(x, ξ, t)ϕmk(ξ, t)− λ

∫
dz f(z, t)Cj(z − x, t)[C1 i(z, t) < 0]

+ η

∫
dξ
(
Ξjk(x, ξ, t)∂

2
t + Πjk(x, ξ, t)∂t + Υjk(x, ξ, t)

)
ϕik(ξ, t) = 0,

(23)

where cj(x, t) =
∫
dz f(z, t)Cj(z − x, t) and c2

jk(x, ξ, t) =
∫
dz f(z, t)Cj(z −

x, t)Ck(z − ξ, t).
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Temporal locality. Approximate
and adjoint
variable-based
methods for
removing
temporal
non-locality.

From Eq. (23) we immediately see that the first term
in the second line of this equation is non local in time; this means that the
equations are non-causal and therefore it is impossible to regard them as
evolution equations for the filters ϕ. To overcome this problem we propose
two different approaches:

• Enforce time locality by computing the entropy on frames rather than
on the entire life of the agent:(∫

D
C1 i(x, t)f(x, t) dxdt

)2

→
∫ T

0
dt

(∫
X
C1 i(x, t)f(x, t) dx

)2

.

• Define a causal entropy

si(t) =

∫ t

0
dτ

∫
X
dxC1 i(x, t)f(x, t),

and insert in the action the time average of this quantity together with
the constraint that enforces this definition. In this way the entropy
term in the Lagrangian will be replaced with

1

T

∫ T

0
s2
i (t) dt+ α

∫ T

0
dt

(
si(t)−

∫ t

0
dτ

∫
X
dxC1 i(x, τ)f(x, τ)

)2

.

• Define the same causal entropy of point 2. above but insert the deriva-
tive of the constraint that enforces this definition. In this way the
entropy term in the Lagrangian will be replaced with

1

T

∫ T

0
s2
i (t) dt+ α

∫ T

0
dt

(
ṡi(t)−

∫
X
dxC1 i(x, t)f(x, t)

)2

.

In this way the E-L equations that we derive are automatically local
in time.

For the moment we will develop the theory using the first assumption.
The variation of this term gives, as expected the local form of Eq. 17: cj(x, t)·∫
dξ ck(ξ, t)ϕik(ξ, t).

Space locality. Adjoint
equations to
remove spatial
locality and
focus of
attention.

We showed that the Euler-Lagrange equations for our
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theory are

λKP
?
t (h(t)Ptϕij(x, t)) + λPh(t)P ?xPxϕij(x, t)

+

∫
X
dξ
[
cj(x, t)ck(ξ, t)− βc2

jk(x, ξ, t)

+ η
(
Ξjk(x, ξ, t)∂

2
t + Πjk(x, ξ, t)∂t + Υjk(x, ξ, t)

)]
ϕik(ξ, t)

+ ν
n∑

m=1

∫
X
dξ c2

jk(x, ξ, t)ϕmk(ξ, t)− νcj(x, t)

− λ
∫
dz f(z, t)Cj(z − x, t)[C1 i(z, t) < 0] = 0,

and as we can see the unknown fields appear inside a space integral. Now
we ask ourselves if it is possible to make this equations local in space so that
they can be regarded as differential equation.

We found that it is possible to do this “localization” exploiting a crucial
property of human vision: The focus of attention. Once we choose g, we
can choose a differential operator L such that Lg = δ.

Now if we define the adjoint function Γij(x, ξ, t) so that

LΓij(x, ξ, t) =
1

g(ξ − a(t))

[
cj(x, t)ck(ξ, t)− βc2

jk(x, ξ, t) + η
(
Ξjk(x, ξ, t)∂

2
t

+ Πjk(x, ξ, t)∂t + Υjk(x, ξ, t)
)]
ϕik(ξ, t),

(24)

and the function Λj(x, ξ, t) as a solution of

LΛij(x, ξ, t) =
ν

g(ξ − a(t))

n∑
m=1

c2
jk(x, ξ, t)ϕmk(ξ, t), (25)

we can rewrite Euler Lagrange equations as

λKP
?
t (h(t)Ptϕij(x, t)) + λPh(t)P ?xPxϕij(x, t) + Γij(x, a(t), t) + Λj(x, a(t), t)− νcj(x, t)

− λh(t)

∫
dz g(z)Cj(z − x, t)[C1 i(z, t) < 0] = 0.

(26)

Equations (24), (25) and (26) together form a system of differential equa-
tions.

Notice that the spatial function g that we used here to resolve space
non-locality is the same function that appears in the measure dµ; however
we could also have chosen a different function.

26



6 Neural interpretation in discrete retina

Allocating one
neuron per
pixel: The
filters ϕijx(t)
are defined on
the quantized
retina X].

Up to this point we have proposed our theory as a field theory, we now
consider the corresponding theory defined on a discretized retina X]. For
each point x of the discretized retina we then have a variable ϕijx(t).

Since all the terms in the cognitive action (except for the kinetic terms)
are expressed in terms of the feature field C1 i(x, t), so we need to show how
this fields can be written on a discretized retina X] = {(i, j) | 0 ≤ i <
`, 0 ≤ j < `}. On a discrete retina we will have instead of the fields
ϕij(x, t) a bunch of functions of the time variable ϕijx(t), indexed by the
point on the retina x other than the filter indices i and j. Similarly the color
field will be replaced by Cix(t).

Using Einstein notation we have that the discretized form of the feature
fields is C1 ]ix(t) = 1/n+ϕiky(t)Ck(x−y)(t), where the sum over y is performed

over the discrete retina X]. Then for example the two pieces of the motion
invariance term becomes

∂tC1 i(x, t)
disc−→ Ċ1

]
ix(t) = ϕ̇iky(t)Ck(x−y)(t) + ϕiky(t)Ċk(x−y)(t);

∂jC1 i(x, t)
disc−→ ∆jC1

]
ix(t) = ϕiky(t)∆jCk(x−y)(t).

The term of motion invariance becomes a quadratic form in ϕ and ϕ̇ since

ϕiky
[
gx(v ·∆Ck(x−y) + Ċk(x−y))(v ·∆Cm(x−z) + Ċm(x−z))δij

]
ϕjmz

+ 2ϕiky
[
gx(v ·∆Ck(x−y) + Ċk(x−y))Cm(x−z)δij

]
ϕ̇jmz

+ ϕ̇iky
[
gxCk(x−y)Cm(x−z)δij

]
ϕ̇jmz.

(27)

The other relevant terms of the theory (the entropy, the relative entropy
and the probabilistic constrains) are just a function V (ϕ(t), t).

Factorization
of f(x, t) =
h(t)g(x− a(t))

Notice also that because of the proposed factorization of the weight func-
tion f(x, t) = h(t)g(x − a(t)) the term gx in the discretized formulation is
also a function of time, and as it has been pointed out in Section 3. This
contributes to the time dependence that affects the coefficients of the differ-
ential equation that governs the evolution of the filters. However since gx
plays the role of a probability distribution over the retina it must be that∑

x∈X] gx = 1 for every t.
Tensor
linearization.

Before going on to describe the theory on the discretized retina we will
show how it is possible to linearize the indices of ϕ in order to deal with a
vectorial variable rather than a more complex tensorial index structure. In
order to be more precise in the construction we will split the retina index x
of ϕ into its two discrete coordinates x1 and x2 so that the filters fields will
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be identified by four rather than three indices. For the same reason when
considered necessary we will also explicitly write down the summations. As
we have argued the first step towards discretization is

C1 i(x, t) −→ C1 ]ix(t) :=
1

n
+

m−1∑
k=0

∑
−`≤ξ1≤`
−`≤ξ2≤`

ϕik(x1−ξ1)(x2−ξ2)(t)Ckξ1ξ2(t)

=
1

n
+

m−1∑
k=0

∑
−`≤ξ1≤`
−`≤ξ2≤`

ϕikξ1ξ2(t)Ck(x1−ξ1)(x2−ξ2)(t).

In Appendix B we show that the feature field can be rewritten as

C1 ]ix(t) =
1

n
+
∑
j∈Ji

qj(t)ΓTx(j)(t),

where qj are the linearized features and Γj the linearized input. The map
Tx transforms appropriately j into another index depending on the point in
which the convolution is computed (see Appendix B).

The cognitive action then can be written with appropriate regularization
terms as

A](q) = A]0(q) +
(∫ T

0
dt h(t)gxC1

]
ix(t)

)2
+

∫ T

0
dt h(t)

[λ1

2
gx

(n−1∑
i=0

C1 ]ix(t)− 1
)2

− λC
2
gx(C1 ]ix(t))2 +

λM
2
gx
(
Ċ1
]
ix(t) + vk∆kC1

]
ix(t)

)2
− λ0gxC1

]
ix(t)[C1 ]ix(t) < 0]

]
,

where A]0(q) is a suitable regularization term that we will discuss in the
following.

Let us now see how the action can be rewritten in terms of the variables
q. The motion invariance term becomes (see Eq. (27))∫ T

0
dt h(t)

n∑
i=1

∑
j,l∈Ji

(
1

2
q̇jMjl(t)q̇` + qjNjl(t)q̇` +

1

2
qj(t)Ojl(t)ql(t)

)
,

where the matrices can be expressed as:

Mj` = gxΓTx(j)ΓTx(l), Nj` = gx(Γ̇Tx(j) + vk∆kΓTx(j))ΓTx(l),

Ojl = gx(Γ̇Tx(j) + vk∆kΓTx(j))(Γ̇Tx(l) + vk∆kΓTx(l)).
(28)
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As it is explained in Appendix B, by a careful redefinition of these matrices,
we can transform the sum over Ji as a sum over the entire set J (definitions
of J and Ji are also in Appendix B and they are essentially subsets of
{0, . . . , nm(3`+ 1)− 1}). Thus the motion invariance term is just∫ T

0
dt h(t)

(
1

2
q̇jM

\
jl(t)q̇` + qjN

\
jl(t)q̇` +

1

2
qj(t)O

\
jl(t)ql(t)

)
,

and from now on the range of the indices of repeated sums is intended to be
J .

Because of the way in which the problem is formulated, it seems natural
to chose as a criterion for the choice of the filters the minimization of the
functionalA]. For this reason the regularizing part of the functionalA]0 must
be carefully chosen so that it does not spoil the coercivity of the functional,
but we need also to be sure that it will give rise to stable EL equations.

Coercivity and stability cannot be obtained with a regularization term
that contains only first derivatives in time (see [4]).

A]0(q) =

∫ T

0
dt h(t)

(
α

2
|q̈|2 +

β

2
|q̇|2 + γq̈ · q̇ +

k

2
|q|2
)

=

∫ T

0
dt h(t)

(
ᾱ

2
|q̈|2 +

β̄

2
|q̇|2 +

γ

2
(q̈ + q̇)2 +

k

2
|q|2
)
.

Cognitive
action in its
linearized form.

All the other terms can be discretized as well (see Appendix B for the
details) so that the action as a functional of the qs reads

A](q) =
n−1∑
i=0

(∫ T

0
dt h

∑
j∈Ji

bjqj

)2
+

∫ T

0
dt h

(α
2
|q̈|2 +

β

2
|q̇|2 + γq̈ · q̇ +

λM
2
q̇ ·M \q̇

+ λMq ·N \q̇ +
1

2
q ·
(
k − λCM \ + λ1M + λMO

\
)
q

+
1− λC
n

b · q + ws(t, q)
)
,

(29)

where α, β, γ, k, λM , λ1 and λC are real positive constants while

bj(t) :=
∑
x∈X]

gxΓTx(j)

ws(t, q) :=
n−1∑
i=0

∑
x∈X]

gx

( 1

n
+
∑
j∈Ji

qjΓTx(j)

)[∑
k∈Ji

qkΓTx(k) < −
1

n

]
.

(30)
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Then if we formulate our minimization problem on the set K := { q ∈
H2(0, T ;RL) | q(0) = q0, q̇(0) = q1} under the assumption that h is limited
in the interval [0 . . T ], and that we can choose k big enough so that the
quadratic term in q in Eq. (29) is positive definite, we can prove that the
minimum of the functional A] on the set K exists (the apparently dangerous
linear term in q with possible negative coefficient can also be controlled with
the regularization term k/2|q|2).

Time-local
form of the
cognitive
action in its
linearized form;
space locality
is a direct
consequence of
retina
quantization.

If we also make the entropy term local in time we get

A](q) =

∫ T

0
dt h

(α
2
|q̈|2 +

β

2
|q̇|2 + γq̈ · q̇ +

λM
2
q̇ ·M \q̇ + λMq ·N \q̇

+
1

2
q ·
(
k +B\ − λCM \ + λ1M + λMO

\
)
q

+
1− λC
n

b · q + ws(t, q)
)
,

(31)

where Bjl = bjbl. As it is remarked above the minimization problem takes
place in the convex and closed set K and then in order to evaluate the first
variation of this functional we need to take as a varying function v ∈ V =
{v ∈ C∞(0, T ;RL) | v(0) = v̇(0) = 0}.

The differential E-L equation for the whole functional thus reads: Forth-order
Euler-Lagrange
differential
equation of
learning; the
term
∇qws(t, q) is
piece-wise
linear.

α̂q(4) + 2 ˙̂αq(3) + (¨̂α+ ˙̂γ − R̂)q̈ −
(

˙̂
R− ¨̂γ − λM N̂ \ + λM (N̂ \)′

)
q̇

−
(

(
˙̂
N \)′ − P̂

)
q +

1− λC
n

b+∇qws(t, q) = 0,

(32)

here P := k + B\ − λCM \ + λ1M + λMO
\, R := β + λMM

\ and we have
used the notation f̂ = hf (so that for example ¨̂α = ḧα).

In deriving equations some conditions arises naturally at t = T :

α̂q̈(T ) + γ̂q̇(T ) = 0

α̂q(3)(T )− ˙̂αq̈(T ) + (β̂ + λMM̂
\ − ˙̂γ)q̇(T ) + λM (N̂ ])′q(T ) = 0

(33)

This is in fact a system of second order ODE’s with non-constant coefficients.
An interesting special case of these equations is that obtained with a null

signal C ≡ 0. With this assumption our equations become

α̂q(4) + 2 ˙̂αq(3) + (¨̂α+ ˙̂γ − β̂)q̈ + (¨̂γ − ˙̂
β)q̇ + k̂q = 0.

Now assume that h(t) = eθt, with θ positive, then System
dynamics at
night: C = 0.αq(4) + 2θαq(3) + (θ2α+ θγ − β)q̈ + (θ2γ − θβ)q̇ + kq = 0. (34)
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In order to see whether this equation can be stable we need to apply the
Routh-Hurvitz criterion. For a fourth order ODE q(4)+aq(3)+bq̈+cq̇+dq = 0
this criterion reduces to check if a > 0, b > 0, 0 < c < ab and 0 < d <
(abc− c2)/a2 that in our case means that Stability

conditions
yield a
relaxation
process that
guarantees the
vanishing of
the any
temporal
derivative of q.

α > 0, β > 0, k > 0 γ >
β

θ
, 0 < α <

(β − γθ)[β − θ(γ + 2θ)]

4k
. (35)

So for example if we choose α = 1/2, γ = 2 and θ = β = k = 1 we obtain
a stable equation. This being said it is also crucial to notice that we have
control over the important parameter of the theory θ as long as you choose
the regularization parameters carefully. Also k can be chosen large enough
to overcome the negative contribution of the conditional entropy and to
make the overall term positive definite.

We are now in condition to address most of the questions raised in Sec-
tion 3.

Addressing Q1, . . . , Q8. The expression of the minimum of the cogni-
tive action leads to computational laws on visual feature in convolutional
networks that very well address the questions Q1, Q2, Q3, Q4. The theory
shows that any visual agents — including animals — can conquer visual skills
without requiring (Q1) “intensive supervision.” In particular, the Euler-
Lagrange differential equations that dictate the agent life only process visual
streams without any supervision, so as they represent a fully-unsupervised
method of feature extraction. The agent interaction with the environment
can, later on, at different stage of development, benefit from a number of
different forms of supervision that can refine the features developed accord-
ing to the proposed scheme. Unlike most approaches from machine learning,
here the role of time is of crucial importance (Q2). Interestingly, it becomes
clear what is the effect of shuffling video frames (Q3), which is likely to be
also a “cul de sac” for humans! Finally, the given laws of feature devel-
opment inherently operate at pixel level (Q4) so as to support a primitive
of vision that is clearly available in humans. The discussion on the role of
motion invariance also indicates the reason why we need distinct feature
models depending on the visual purpose. In particular, motion invariance
turns out to be useful for recognition tasks, whereas such a property must
not hold for neurons involved in motion control of the agent. This addresses
question Q5 on the reason why human visual cortex is in fact composed of
two different systems, namely the ventral and dorsal mainstream. The spa-
tial non-locality of the Euler-Lagrange equations discussed in the previous
section (23) suggests that efficient solutions cannot be discovered without
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making assumptions on the convolutional filters. Interestingly, the introduc-
tion of adjoint variables makes is possible to remove spatial locality. This is
especially interesting when the Green function is chosen as the g functions
of the probabilistic measure. Clearly, it is a peaked bell-shaped structure
of g, centered on the point of focus of attention a(t), that leads to discover
peaked filters. This arises from simple arguments: in case of peaked g the
convolutional net only needs to react to pixels close to the focus of attention
and the spatial regularization does the rest. Hence, neurons that are based
on receptive fields become the natural solution and, consequently, we nicely
also interpret the reason why the ventral mainstream is organized according
to a hierarchical architecture (Q6). At the same time, also a natural answer
arises on the reason why do animals with very good visual skills typically
focus attention (Q7). In particular, animals with foveal eyes they perform
complex movements with the main purpose of locating informative regions
of the retina. At the light of the theory proposed in this paper, the factor g
that is used in the ergodic translation of the probabilistic measure dµ plays
a crucial role defining a system dynamics to address (Q6) and (Q7).

7 Boundary conditions and causality

We have seen that the batch-mode approach is motivated by the property
that, under appropriate conditions, the cognitive action is convex and admits
a unique minimum. This holds true when boundary conditions (33) are
imposed. Interestingly, these conditions are verified in the simple case in
which

Boundary

“relaxing
conditions.”

q(0) = 0 (36)

q̇(T ) = q̈(T ) = q(3)(T ) = 0 (37)

Clearly, the conditions q(0) = 0 and q̇(0) = 0 are also a natural choice; in
particular, from the first one we conclude that ∀x ∈ X : C1 i(x, 0) = 1/n.
Throughout the paper, these are referred to as the “relaxing boundary condi-
tions.” Now, if we want to gain causality we need to impose that the optimal
solution is one which is independent of the time horizon. Suppose we want
to discover a solution q over [0 . . t2] such that, once restricted to [0 . . t1] is
the same as the solution over [0 . . t1] for any t2 > t1. For this to happens,
we can promptly see that Euler-Lagrange equations to be used for solving
the problem over [t1 . . t2] do require to be initialized according to Cauchy
conditions on t1. This arises when considering that as t2 → t1 the above
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boundary conditions for the solution over [t1 . . t2] collapse to Cauchy condi-
tions. Clearly, forcing the initial conditions is not necessarily consistent with
searching the minimum under boundary conditions (33). The consistence,
however, can be gained whenever we conceive a novel learning scheme which
corresponds with a temporal deformation of the given Lagrangian. Let us
focus on the special case in which the boundary conditions (37) are im-
posed. In order to guarantee the consistency with Cauchy initial conditions,
one needs to ensure the fulfillment of the condition on the derivatives of q
on the right border, which can be if we upper bound the values of ‖q(i)‖.
This is made possible by the very special nature of the video signal C; if we
scale it up and down, we do not change the associated information. Hence,
If 0 ≤ ρ ≤ 1 then Cb = ρC carries out the same information as C. However,
notice that as ρ → 0, because of the retina sensibility, the signal is lost.
When quantizing Cb, information loss is due to the limited number of bits
used to represent C. Now, let ε1, ε2, ε3 > 0 be derivative thresholds to en-
sure that we follow a learning trajectory that is nominally compatible with
the relaxing boundary conditions (37). Basically we assume that, instead of
feeding the machine with signal C, the input is Cd defined as

Blurring
process ρ
dynamics and
day-night
rhythm.

Cb =

3∏
i=1

[εi − ‖q(i)‖ > 0] ρC (38)

ρ̇ = η(1− ρ)+

3∏
i=1

(εi − ‖q(i)‖)+, (39)

where (α)+ := [α ≥ 0]α and ρ(0) = 0. We can easily see that the ρ dynamics
is consistent with 0 ≤ ρ ≤ 1. Likewise, the learning trajectory that is
nominally compatible with the boundary conditions since we always have
‖q̇‖ < ε1, ‖q̈‖ < ε2 and ‖q(3)‖ < ε3. This holds true because of the “night
relaxation dynamics” in case in which Eq. (34) is stable, that is guaranteed
when choosing a set of parameters that satisfy the conditions (35). As any
of the conditions εi − ‖q(i)‖ > 0 is violated, the threshold εi is reduced to
ζεi, that is εi ← ζεi, with 0 ≤ ζ ≤ 1, so as to carry out a sort of hysteresis
process. We can easily that the time the agent is sleeping at night is strongly
depending on ζ. Its choice contributes to define the duration of a relaxation
behavior until until |q(i)| > ζεi holds true. As the condition is met the
threshold εi is restored in Eq (38). The overall dynamics guarantees that
ζεi < ‖q(i)‖ < εi. To sum up, when εi is small enough the learning trajectory
that is driven by the Cauchy initialization evolves is always kept close to
the boundary conditions on the right side of the interval. This guarantees
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that the learning problem formulated as the minimization of the cognitive
action is solved on any interval, regardless of its length. In a sense, there
is no difference between the learning and test; the agent simply lives in its
own learning environment by optimizing the cognitive action, that is in fact
expressing the constraints to be satisfied.

Addressing Q9: blurring in newborns. As already noticed, while the
transformation C → Cb = ρC does not destroy information in the continuum
setting of computation, as the video is quantized, no matter how many bits
we choose, for arbitrarily small values of ρ the signal Cb can be significantly
blurred. Interestingly, the above computational scheme, which is dictated
only by mathematical requirements of satisfying the boundary conditions,
is what happens in newborns during their evolutive process of vision acqui-
sition. It is worth mentioning that the scale transformation C → Cb = ρC
is not the only one which supports a system dynamics that is nominally
compatible with the boundary conditions. If the signal C undergoes a spa-
tiotemporal low-pass filtering computation we end up in conclusions that the
correspondent dynamics is very similar to those driven concerning Eqs. (38)
and (39). Notice that video blurring, which induces a deformation into the
Lagrangian favors the development of a technically sound solution and it is
at the same time fully compatible with the problem of learning in visual en-
vironments. The reason is that humans and machines must do their best to
extract visual cues also in presence of fog or in dark environments. Hence, a
learning process focussed on information extraction in case of blurred video
turns out to be useful for the kind of visual skills that are ordinarily required.

Blurring and
causal agents.

A strong property that is acquired by visual agent carrying out a learning
trajectory that is nominally compatible with the boundary conditions is that
they are causal agents. This is straightforward consequence of the fact that
the conditions (37) are nominally verified at any time of the agent life. The
causality of the agent is of crucial importance for the learning process, since
causality has important consequences on statistical consistency. The last
but not the least, the described blurring process plays a crucial role to make
the Euler-Lagrange differential equations of learning very-well conditioned.
Again, this is in fact a consequence of imposing a learning trajectory where
the derivatives of q are upper bounded with small values. This allows us to
set up a numerical framework with strong precision and, at the same time,
with limited computational burden. This is also gained because of the lim-
itations on ‖q(i)‖ and it is clearly an important feature in computer vision.
An accurate analysis on the dynamics of ρ clearly indicates that the choice
of η plays a crucial role. One very much would like to synchronize the end
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of blurring with the end of learning, that must be somewhat connected with
the statistical structure of the given visual environment. It looks like that
there is no clear way of perfectly performing such a synchronization. The
main reason is that we are in front of complex dynamics driven by the video
signal that are likely hard to catch. This analysis addresses directly item
Q5 raised in Section 3.

Addressing Q10: day-night rhythm. Interestingly, the described re-
laxation process is just a way to give up looking for a magic blurring process
and rely, on the opposite, on a strategy that guarantees built-in satisfaction
of the boundary conditions. Eqs (38) and (39) draws an intriguing picture
that very much reminds us of the day-night human alternation rhythm. In-
terestingly, the idea of following a trajectory that is glued to the boundary
conditions naturally leads to segment the agent’s life into days and nights.
While the video processing takes place whenever εi − ‖q(i)‖ > 0, the viola-
tion of the condition corresponds to the agent sleep phase where relaxation
takes place. Day-night

rhythm is
primarily
defined by the
choice of ζ.

Clearly, the day-night alternation rhythm depends strongly on
the choice of ζ. Interestingly, there is no special reason for assuming that it
must be kept constant during the agent’s life; other objectives could drive
a different decision. In addition, notice that the agent’s relaxation results
in a truly sleep in the sense that the agent, unless you do not waked it up,
cannot process visual information upon request. Interestingly, this gives the
agent a truly human-like behavior, that pairs with the common framework
of learning under video blurring.

The overall process dynamics is also dependent on other remarkable
choices. In particular, the analysis carried out in this paper focuses on
a special choice of function h (e.g. eθt). Its consequence is that for an
effective generalization process to take place one needs to establish a very
slow dissipative processes to guarantee that the weighting term h does not
penalize too much back in time. This is of crucial importance in order to
give the agent the capability of storing enough information for its decision.

This analysis addresses directly directly item Q6 raised in Section 3.

8 Discussion

This paper is about information-based laws of visual features, that are de-
termined under the principle of Maximum Entropy. Learning in

wild visual
environments.

Unlike most machine
learning approaches to computer vision, here we assume that the agent
which performs feature extraction lives in an “wild visual environment,”
and processes video streams instead of huge image repositories. Amongst
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the constraints imposed in the convolutional-based feature generation, mo-
tion invariance does represent the major distinctive idea.

Motion
invariance as
the truly
unique
invariance.

It is pointed out that all other invariances, that are typically considered
in models of computer vision, turn out to emerge naturally from imposing
feature motion invariance. In a sense, imposing such an invariance corre-
sponds with the natural exploitation of a huge amount of supervised infor-
mation from nature, which invites us to propose a coherent labelling for
moving pixels of a certain object. The proposed theory makes it possible to
learn the filters of convolutional nets by solving differential equations that
can be regarded as information-based laws of feature extraction.

Differential
equation of
learning: the
magic of
“fourth order.”

The proposed computation model arises from the minimization of an
appropriate set of constraints that is expressed by the associated cognitive
action. The Euler-Lagrange equations of this action return a trajectory that
is the minimum of the action under boundary conditions that impose the
vanishing of the derivates of the filter parameters. The differential equations
of the trajectory has forth-order and turns out to be the simplest model
which can simultaneously guarantee the minimization of the action and the
asymptotic stability.

Blurring and
day-night
rhythm.

A fundamental result on the proposed theory concerns the structure of
the companion differential equation which carries out the blurring process
as well as the day-night rhythm cycle. This drives the trajectory towards a
system dynamics which guarantees that the initial conditions for the differ-
ential equation are consistent with the boundary conditions.

Focus of
attention.

According to the general formulation of the theory, the optimal solution
requires to disentangle the puzzle of Euler-Lagrange equations that take
the form of integro-differential equations with non-locality in both time and
space. While one can get rid of time non-locality in different ways, in order
to disentangle spatial non-locality it is shown that focus of attention is a
natural solution that dramatically reduces the computation burden.

Addressing the
“ten
questions” on
the emergence
of visual
perception,
regardless of
the nature of
the agent.

The theory opens the doors to a truly new computational framework
for computer vision, where convolutional nets can learn visual features sim-
ply by acquiring visual data with no supervision. In addition to this new
applicative perspective, the theory addresses the “ten questions” on the
emergence of visual perceptual skills in both humans and machines. Inter-
estingly, many biological solutions of evolution are naturally explained by
the proposed framework, which suggests that they are themselves driven by
information-based laws. There a number of on-going studies that emerge
from the formulation given in this paper:

• Optical flow equation as another Lagrangian coordinate

36



In the paper we have assumed that the optical low is given. Following
the basic idea of brightness invariance ([10]) the velocity in any pixel
x at time t satisfies the condition C(x(t), t) = c, where c is a real
constant. Hence we need to satisfy the constraint

∂tC + vj∂jC = 0.

This constraint can be associated with the penalty∫
D
dµ
(
∂tC + vj∂jC

)2
.

Once this is added to the cognitive action, we are in front of a new
problem with the additional Lagrangian coordinates vj . As suggested
in ([10]), it is also opportune to introduce a regularization term so as
to obey to the parsimony principle.

The
reinforcement
loop for optical
flow and
feature
computation.

Interestingly, one can start computing the velocity field by focussing
only on the terms of the action that involves the corresponding com-
putation. As this is available, it can be used for feature extraction as
described in this paper. However, it is clear that one can benefit of
a positive reinforcement of the estimations of the optical flow and of
the visual features. Once the features have been determined on the
basis of a given optical flow, we can optimize the overall cognitive ac-
tion again so as to refine its estimation. This is quite reasonable: it
means that whenever, we have a cognitive mechanisms for attaching
labels to moving objects, those labels clearly facilitate their tracking.
Basically, tracking and recognition becomes two cooperating processes
that mutually benefit by a virtuous circle of interactions. However, it
interesting to notice that the optical flow can be determined regard-
less of feature extraction with good approximation. The described
process somewhat obeys to general principles pointed out in develop-
mental psychology concerning the the presence of stages in cognitive
processes taking place in children (see e.g. [12, 19]).

• Integration with eye movements
A similar mutual benefit can be experimented when pairing the com-
putation of the trajectory of the focus of attention with the process
of feature extraction. A recent study on eye movement ([25]) is in
fact based on the variational same principle invoked in this paper and,
therefore, a natural pairing is possible. In particular, instead of adopt-
ing the proposed way of modeling the peripheral vision, we can modify
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the “curiosity field” that only depends on the gradient of the bright-
ness with an appropriate enriched field that takes into account the
features extracted at (x, t). The

reinforcement
loop of focus
of attention
and feature
computation.

In so doing, instead of modeling the local
details only, this new field turns out to depend also on the context of
the pixel and can properly model peripheral vision processes. Clearly,
like for the optical flow estimation, there is in fact a looping process
that can yield a benefit in the process of feature extraction.

• Learning in layered architectures
The variational analysis carried out in this paper for the optimal ex-
traction of visual features provides yet another remarkable support to
the need of hierarchical organization in neural computation. It has
been shown that only deep nets can efficiently discover features also in
the fully unsupervised framework proposed in this paper (see question
Q6). It has been pointed out that different layers extract additional in-
formation simply because of the natural receptive field structure of the
filters that is derived from the need of local equations. Interestingly,
once we realize that shallow nets cannot afford to solve the problem
efficiently, we can start thinking of a deep net since the beginning and
propose a different formulation.

Feature
encoding with
deep nets.

Suppose we add a layer on top of C1 , so as C2 = ϕ2,1 ? C1 . In this
case, we have two unknown filters ϕ1,0 and ϕ2,1. We can reformulate
the problem of learning ϕ1,0 and ϕ2,1 by composing a new cognitive
action, where we add the new constraints C1 = ϕ1,0?C and C2 = ϕ2,1?C1 .
In so doing, in addition to the the unknown filters ϕ1,0 and ϕ2,1 we
also involve the variables C1 and C2 . Of course, this way of enforcing
constraints that express the deep net model can be extended to any
depth.

• Introduction of the purpose of the agent
While the feature extraction process described in this paper has a truly
unsupervised nature, we can think of environmental interactions that
provide fundamental information for the achievement of a specific task.
For example, as already pointed out, navigation in the environment
and object recognition are remarkably different. In humans and pri-
mates this corresponds with a separate computational process taking
place in the dorsal and ventral pathways. Interestingly, the variational
framework described in this paper need not to change to acquire skills
driven by a certain purpose. We need to compose the appropriate
cognitive action to properly model the agent environmental interac-
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tion, but the main learning structure that emerges as Euler-Lagrange
equations is the same. In particular, the overall learning process based
on the video blurring and day-night rhythm is still at the basis of the
satisfaction of the boundary conditions. The previous remarks on the
way the optical flow and also the eye movements can improve during
the acquisition of visual features indicates that, again, the learning
process must be driven by developmental phases. This means that the
unsupervised process described in this paper must be carried out un-
til good features have been developed and, only later on, higher level
linguistic tasks must take place. Of course, this can be driven by fo-
cussing of attention mechanisms that simply ignore complex linguistic
tasks until low level visual features have been developed.

• Statistical connections Most of machine learning algorithms are devel-
oped in the framework of statistics, so as the achievement of good gen-
eralization is strongly connected with the appropriate selection of the
samples to be used for learning. The approach to learning discussed
in this paper does not rely on a training set, but on the formalization
of the life of the agent in its own visual environment, so as there is
no neat distinction between training and test sets. Clearly, we need
to devise a different way of capturing the consistency of the learning
process that is not necessarily driven directly by statistical principles
that rely on sample complexity analyses. Interestingly, in the case of
asymptotically stable Euler-Lagrange differential equations and of al-
most periodic[3] video signals we conjecture that the formulation given
in this paper allows us to establish close links with classic statistical
assessment. This is due to the minimization property of the action
that has been derived in this paper and to the causality of the agent
that derives from the blurring process.

• Energy analysis While the day-night rhythm alternation, along with
the associated relaxation phase is technically sound, one promptly re-
alizes that in order to gain visual concepts, the agent needs to develop
a filter solution q that, after a certain learning period, ends up into a
stable point at the beginning of every day. This is fundamental in order
to guarantee a consistent scheme in response to visual stimulus. How
can such a configuration be reached? Clearly, the filters are daily up-
dated beginning from the agent birth. The given computational laws
of learning, that include video blurring and the day-night rhythm al-
ternation indicate that the filter updating is quite robust and proceeds
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with a velocity that very much depends on the monotonic function h,
which plays an important role in stability. We conjecture that the pro-
cess of building the convolutional filters is in fact one which dissipates
energy to construct ordered configurations, driven by the video stream
regularities. The general analysis given in [4] could be used to explore
this conjecture.
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Appendices

A Variation of the motion term

We will show in some details how the variation of the motion term ωm(ϕ) =∫
dzdτ f(z, τ)(DτC1 k(z, τ))2 gives Eq. (21). For compactness we let d/dt ≡

Dt, then

δωm(ϕ)

δϕij(x, t)
=

∫
dzdτdξ f(z, τ)DτC1 k(z, τ)

δ

δϕij(x, t)
Dτ (Cm(z−ξ, τ)ϕkm(ξ, τ)).

now using the property δ/δu(x)
∫
dy A(y)u̇(y) = −

∫
dy Ȧ(y)δ(x− y) (valid

under the assumption that in doing the variations all the boundary terms
are zero) we have

δωm(ϕ)

δϕij(x, t)
=

∫
dz
[
f(z, t)DtC1 i(z, t)DtCj(z − x, t)

− ∂t(f(z, t)Cj(z − x, t)DtC1 i(z, t))
]
.

We can rewrite this variation in terms of the filters ϕ using the expression
for DtC1 i(z, t) =

∫
dy [∂tϕij(y, t)Ck(z − y, t) + ϕik(y, t)DtCk(z − y, t)]:∫

dzdy
{
f(z, t)

[
∂tϕij(y, t)Ck(z − y, t)

+ ϕik(y, t)DtCk(z − y, t)
]
DtCj(z − x, t)

− ∂t
[
f(z, t)Cj(z − x, t)

(
∂tϕij(y, t)Ck(z − y, t)
+ ϕik(y, t)DtCk(z − y, t)

)}
.

Then expanding this expression we obtain

δωm(ϕ)

δϕij(x, t)
=

∫
dy
{
−
(∫

dz f(z, t)Cj(z − x, t)Ck(z − y, t)
)
∂2
t ϕik(y, t)

+
(∫

dz f(z, t)DtCj(z − x, t)Ck(z − y, t)

− ∂t[f(z, t)Cj(z − x, t)Ck(z − y, t)]
)
∂tϕik(y, t)

+
(∫

dz f(z, t)DtCj(z − x, t)DtCk(z − y, t)

− ∂t[f(z, t)Cj(z − x, t)DtCk(z − y, t)]
)
ϕik(y, t)

}
,

which is exactly the same expression of Eq. (21) once we define A, B and C
as in Eq. (22).
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B Linearization

Let us now define the sets

I = { ijkl | i, j, k, l ∈ N, 0 ≤ i < n, 0 ≤ j < m, −` ≤ k ≤ `, −` ≤ l ≤ ` }
Ī = { ijkl | i, j, k, l ∈ N, 0 ≤ i < n, 0 ≤ j < m, 0 ≤ k ≤ 2`, 0 ≤ l ≤ 2` }
Ī+ = { ijkl | i, j, k, l ∈ N, 0 ≤ i < n, 0 ≤ j < m, 0 ≤ k ≤ 3`, 0 ≤ l ≤ 3` }

together with the map τ` defined by τ`(i j k l) = ij(k + `)(l + `). This map
clearly is a bijection between I and Ī with the obvious inverse τ−`. The
proper linearization is achieved through the map r : Ī+ → J+ = {0, . . . , N}
with N = nm(3`+ 1)2 − 1

r(i j k l) =

[
i,

n,

j,

m,

k,

3`+ 1,

l

3`+ 1

]
= l+k(3`+1)+j(3`+1)2 + i(3`+1)2 ·m.

And since this is a mix-radix system with bases 3` + 1, m and n (see [14]
page 208) r is bijective and to map a number u ∈ J+ back to Ī+ one just
have to apply the traditional division algorithm with slight modifications
(the precise algorithm is explained in exercise 2 page 327 of [14]). Let us
also define J = r(Ī).

Given the maps ϕijkl : R
+ → R, t 7→ ϕijkl(t) for each j ∈ J+ we can

define the map qj : R+ → R

t 7→ qj(t) := ϕτ−`(r−1(j))(t).

Similarly for the color field maps Cjkl : R
+ → [0 . . a] with a < ∞ defined

by t 7→ Cjkl(t), we first extend, for every 0 ≤ i < n, to a three index
object C̃ijkl(t) = Cjkl(t) and then we define for every j ∈ J+ the function
Γj : R+ → [0 . . a] so that

t 7→ Γj(t) := C̃τ−`(r−1(j))(t).

With this definitions we can now rewrite C]ix in terms of the new functions
q and Γ; we have:

C1 ]ix(t) =
1

n
+

m−1∑
k=0

∑
0≤ξ1≤2`
0≤ξ2≤2`

ϕik(ξ1−`)(ξ2−`)(t)C̃ik(x1−ξ1+`)(x2−ξ2+`)(t)

=
1

n
+
m−1∑
k=0

∑
0≤ξ1≤2`
0≤ξ2≤2`

ϕτ−`(ikξ1ξ2)(t)C̃τ−`(ik(x1−ξ1+2`)(x2−ξ2+2`)(t).
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Then if we now define γx(i j k l) := i j (x1 − k + 2`) (x2 − l + 2`) from the
definition of q and Γ we have that

C1 ]ix(t) =
1

n
+
m−1∑
k=0

∑
0≤ξ1≤2`
0≤ξ2≤2`

qr(ikξ1ξ2)(t)Γr(γx(ikξ1ξ2))(t).

Notice that r(γx(i k ξ1 ξ2)) is well defined since 0 ≤ xi − ξi + 2` ≤ 3` for
i = 1, 2 whenever 0 ≤ xi ≤ ` and 0 ≤ ξi ≤ 2`. Moreover if we set J ⊃
Ji := { j ∈ J | r−1(j) = i k α β, 0 ≤ j < m, 0 ≤ α ≤ 2`, 0 ≤ β ≤ 2` } for
i = 0, . . . , n− 1 then we finally have

C1 ]ix(t) =
1

n
+
∑
j∈Ji

qj(t)ΓTx(j)(t),

where Tx(j) = r(γx(r−1(j))). Notice that for any j ∈ J we may have
Tx(j) 6∈ J , however we always have that Tx(j) ∈ J+ and therefore we may
think of Tx as a map between J and J+.

We will now show how it is possible to rewrite each term of the cognitive
action in terms of the new variables qj . Before doing this let us collect
the relevant variables for the feature extraction into a vector: Let q :=
(qi1 , qi2 , . . , qiL)′, where i1 < i2 < · · · < iL are the indices that form J ,
i.e. J = {i1, i2, . . . iL} with ij ∈ J+, and L = nm(2` + 1)2. This vector
naturally defines a map q : R+ → RL. Moreover we will assume that matrix
multiplications and scalar products are computed summing the indices of J :
(Ax)i =

∑
j∈J aijxj and a · b =

∑
j∈J ajbj .

Let us begin with the entropy term

(∫
D
dµC1 i

)2 disc−→
n−1∑
i=0

(∫ T

0
dt h(t)

∑
x∈X]

gx
( 1

n
+
∑
j∈Ji

qjΓTx(j)

))2

=
1

n
+

2

n

∫ T

0
dt hb · q +

n−1∑
i=0

(∫ T

0
dt h

∑
j∈Ji

bjqj

)2
,

where we have set bj(t) :=
∑

x∈X] gxΓTx(j) and b = (bi1 , bi2 , . . . , biL)′.
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The conditional entropy instead gives∫
D
dµC1 2

i
disc−→

n−1∑
i=0

∫ T

0
dt h(t)

∑
x∈X]

gx

( 1

n
+
∑
j∈Ji

qjΓTx(j)

)2

=
1

n
+

2

n

∫ T

0
dt hb · q +

∫ T

0
dt h(t)

n−1∑
i=0

∑
j,`∈Ji

qjMj`q`

=
1

n
+

2

n

∫ T

0
dt hb · q +

∫ T

0
dt h(t)q ·M \q

where Mjl =
∑

x∈X] gxΓTx(j)ΓTx(l) and we have introduced the following
notation: Given a matrix Q over the indices of J i.e. given the numbers Qjl
with j, l ∈ J we define Q\ such that (Q])jl = Qjl · [j and l ∈ Jk for some k].

In this way
∑n−1

i=0

∑
j,l∈Ji qjQjlql =

∑
j,l∈J qjQ

\
jlql = q ·Qq.

The motion invariance term is already discussed in Section 6, so we can
move on to the probabilistic constraints.∫

D
dµ
(n−1∑
i=0

C1 2
i − 1

)
disc−→

∫ T

0
dt h(t)

∑
x∈X]

gx

(n−1∑
i=0

∑
j∈Ji

qjΓTx(j)

)2

=

∫ T

0
dt h(t)q ·Mq.

The sign term instead gives:∫
D
dµC1 i[C1 i < 0]

disc−→
∫ T

0
dt h(t)ws(t, q)

where

ws(t, q) :=
n−1∑
i=0

∑
x∈X]

gx

( 1

n
+
∑
j∈Ji

qjΓTx(j)

)[∑
k∈Ji

qkΓTx(k) < −
1

n

]
.

Therefore the action in the discretized formulation becomes

A(q) =
n−1∑
i=0

(∫ T

0
dt h

∑
j∈Ji

bjqj

)2
+

∫ T

0
dt h

(α
2
|q̈|2 +

β

2
|q̇|2 +

λM
2
q̇ ·M \q̇

+ λMq ·N \q̇ +
1

2
q ·
(
k − λCM \ + λ1M + λMO

\
)
q

+
1− λC
n

b · q + ws(t, q)
)
.

(40)
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Also if we approximate the entropy term as suggested in the first point at
the end of Section 5. With this substitution the only change is that the first
non-local term in Eq. (40) that becomes

1

2

n−1∑
i=0

∫ T

0
dt h

(∑
j∈Ji

bjqj

)2
=

1

2

∫ T

0
dt h

n−1∑
i=0

∑
j,l∈Ji

qjbjblql =
1

2

∫ T

0
dt q ·B\q,

where Bjl = bjbl. So the action becomes

A(q) =

∫ T

0
dt h

(α
2
|q̈|2 +

β

2
|q̇|2 +

λM
2
q̇ ·M \q̇ + λMq ·N \q̇

+
1

2
q ·
(
k +B\ − λCM \ + λ1M + λMO

\
)
q

+
1− λC
n

b · q + ws(t, q)
)
.

(41)

If we let k + B\ − λCM \ + λ1M + λMO
\ ≡ P , β + λMM

\ ≡ R and we use
the convention that f̂ = fh, we can rewrite the action in the more compact
way

A(q) =

∫ T

0
dt
( α̂

2
|q̈|2 +

1

2
q̇ · R̂q̇ + λMq ·N \q̇ +

1

2
q · P̂ q

+
1− λC
n

b · q + ws(t, q)
)
.

(42)

C Variation in the discrete

Let us consider the first variation of the functional in Eq. (31). Actually
since the variation of the second and third line of that equation is immediate
let us just focus on the variation of the first line and define

A1(q) =

∫ T

0
dt
( α̂

2
|q̈|2 +

β̂

2
|q̇|2 + γ̂q̈ · q̇ +

λM
2
q̇ · M̂ \q̇ + λMq · N̂ \q̇

)
Let ψ(s) = A1(q+sv) for any v ∈ V , then the first variation in the direction
of v of this functional is of course ψ′(0). Then:

ψ′(0) =

∫ T

0
dt
{

(α̂q̈+ γ̂q̇) · v̈+[(β̂+λMM̂
\)q̇+ γ̂q̈+λM (N̂ \)′q] · v̇+λM N̂

\q̇ ·v}

45



Now we start integrating by parts and we repeatedly use the fact that if
v ∈ V , then v(0) = v̇(0) = 0, then we get

ψ′(0) =
[
(α̂q̈ + γ̂q̇)v̇ +

(
(β̂ + λMM̂

\)q̇ + γ̂q̈ + λM (N̂ \)′q − (α̂q̈ + γ̂q̇)̇
)
v
]
t=T

+

∫ T

0

{
(α̂q̈ + γ̂q̇)̈ −

(
(β̂ + λMM̂

\)q̇ + γ̂q̈ + λM (N̂ \)′q
)̇

+ λM N̂
\q̇
}
· v

The E-L equations are obtained when we impose ψ′(0) = 0 and since we can
always chose a variation such that v(T ) = v̇(T ) = 0 using the fundamental
lemma of the calculus of variations

α̂q(4) + 2 ˙̂αq(3) + (¨̂α+ ˙̂γ − β̂ − λMM̂ \)q̈

+ (¨̂γ − ˙̂
β − λM (

˙̂
M \ + (N̂ \)′ − N̂ \))q̇ − λM (

˙̂
N \)′q = 0.

(43)

Putting back the E-L equations into the expression of the variation we also
obtain the appropriate boundary conditions

α̂q̈(T ) + γ̂q̇(T ) = 0;

α̂q(3)(T )− ˙̂αq̈(T ) + (β̂ + λMM̂
\ − ˙̂γ)q̇(T ) + λM (N̂ ])′q(T ) = 0.

Notice that when the input is zero at t = T , then the second of this condi-
tions reduces to α̂q(3)(T )− ˙̂αq̈(T ) + (β̂ − ˙̂γ)q̇(T ) = 0 which does not involve
the value of q at T but only the values of its derivatives.

In order to complete the variation of the functional in Eq. (31) we have
to add to Eq. (43) the term

(
kÎ + B̂\ − λCM̂ \ + λ1M̂ + λM Ô

\
)
q + 1−λC

n b̂+
∇qŵs(t, q). This means that, referring to Eq. (3) the coefficients has the
following form:

A(t) =
ḣ

h
; (44a)

B(t) =
ḧ

h
+
γḣ

αh
− β

α
− λM

α
M \; (44b)

C(t) =
γḧ

αh
− βḣ

αh
− λM ḣ

αh
− λM

α
(Ṁ \ + (N \)′ −N \); (44c)

D(t) = −λM ḣ
αh

(N \)′ +
λM
α

(O\ − (Ṅ \)′) +
k

α
+
B\

α
− λC

α
M \ +

λ1

α
M ;

(44d)

F (t, q) =
1− λC
αn

b+
1

α
∇qws(t, q). (44e)

The matrices M , N and O are defined in Eq. 28, the vector b and the
function ws are instead introduced in Eq. 30 and Bjl = bjbl.
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