
GbR 2019

?

LOCAL PROPAGATION
IN GRAPH NEURAL NETWORKS

62 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 1. Some applications where the information is represented by graphs: (a) a chemical compound (adrenaline), (b) an image, and (c) a subset of the web.

phase. The idea is to encode the underlying graph structured
data using the topological relationships among the nodes of the
graph, in order to incorporate graph structured information in
the data processing step. Recursive neural networks [17], [19],
[20] and Markov chains [18], [21], [22] belong to this set of tech-
niques and are commonly applied both to graph and node-fo-
cused problems. The method presented in this paper extends
these two approaches in that it can deal directly with graph struc-
tured information.

Existing recursive neural networks are neural network models
whose input domain consists of directed acyclic graphs [17],
[19], [20]. The method estimates the parameters of a func-
tion , which maps a graph to a vector of reals. The approach
can also be used for node-focused applications, but in this case,
the graph must undergo a preprocessing phase [23]. Similarly,
using a preprocessing phase, it is possible to handle certain types
of cyclic graphs [24]. Recursive neural networks have been ap-
plied to several problems including logical term classification
[25], chemical compound classification [26], logo recognition
[2], [27], web page scoring [28], and face localization [29].

Recursive neural networks are also related to support vector
machines [30]–[32], which adopt special kernels to operate on
graph structured data. For example, the diffusion kernel [33] is
based on heat diffusion equation; the kernels proposed in [34]
and [35] exploit the vectors produced by a graph random walker
and those designed in [36]–[38] use a method of counting the
number of common substructures of two trees. In fact, recursive
neural networks, similar to support vector machine methods,
automatically encode the input graph into an internal represen-
tation. However, in recursive neural networks, the internal en-

coding is learned, while in support vector machine, it is designed
by the user.

On the other hand, Markov chain models can emulate
processes where the causal connections among events are
represented by graphs. Recently, random walk theory, which
addresses a particular class of Markov chain models, has been
applied with some success to the realization of web page
ranking algorithms [18], [21]. Internet search engines use
ranking algorithms to measure the relative “importance” of
web pages. Such measurements are generally exploited, along
with other page features, by “horizontal” search engines, e.g.,
Google [18], or by personalized search engines (“vertical”
search engines; see, e.g., [22]) to sort the universal resource
locators (URLs) returned on user queries.2 Some attempts have
been made to extend these models with learning capabilities
such that a parametric model representing the behavior of
the system can be estimated from a set of training examples
extracted from a collection [22], [40], [41]. Those models are
able to generalize the results to score all the web pages in the
collection. More generally, several other statistical methods
have been proposed, which assume that the data set consists of
patterns and relationships between patterns. Those techniques
include random fields [42], Bayesian networks [43], statistical
relational learning [44], transductive learning [45], and semisu-
pervised approaches for graph processing [46].

In this paper, we present a supervised neural network model,
which is suitable for both graph and node-focused applications.
This model unifies these two existing models into a common

2The relative importance measure of a web page is also used to serve other
goals, e.g., to improve the efficiency of crawlers [39].

GNN

Marco Gori
Department of Information Engineering

and Mathematics

GbR 2019

OUTLINE

• Graphical domains

• Graph Neural Networks (GNN) and recent
evolutions

• Local Propagation in NN and in GNN

• The perspective of “learning from constraints”

GbR 2019

GRAPHICAL DOMAINS

?
62 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 1. Some applications where the information is represented by graphs: (a) a chemical compound (adrenaline), (b) an image, and (c) a subset of the web.

phase. The idea is to encode the underlying graph structured
data using the topological relationships among the nodes of the
graph, in order to incorporate graph structured information in
the data processing step. Recursive neural networks [17], [19],
[20] and Markov chains [18], [21], [22] belong to this set of tech-
niques and are commonly applied both to graph and node-fo-
cused problems. The method presented in this paper extends
these two approaches in that it can deal directly with graph struc-
tured information.

Existing recursive neural networks are neural network models
whose input domain consists of directed acyclic graphs [17],
[19], [20]. The method estimates the parameters of a func-
tion , which maps a graph to a vector of reals. The approach
can also be used for node-focused applications, but in this case,
the graph must undergo a preprocessing phase [23]. Similarly,
using a preprocessing phase, it is possible to handle certain types
of cyclic graphs [24]. Recursive neural networks have been ap-
plied to several problems including logical term classification
[25], chemical compound classification [26], logo recognition
[2], [27], web page scoring [28], and face localization [29].

Recursive neural networks are also related to support vector
machines [30]–[32], which adopt special kernels to operate on
graph structured data. For example, the diffusion kernel [33] is
based on heat diffusion equation; the kernels proposed in [34]
and [35] exploit the vectors produced by a graph random walker
and those designed in [36]–[38] use a method of counting the
number of common substructures of two trees. In fact, recursive
neural networks, similar to support vector machine methods,
automatically encode the input graph into an internal represen-
tation. However, in recursive neural networks, the internal en-

coding is learned, while in support vector machine, it is designed
by the user.

On the other hand, Markov chain models can emulate
processes where the causal connections among events are
represented by graphs. Recently, random walk theory, which
addresses a particular class of Markov chain models, has been
applied with some success to the realization of web page
ranking algorithms [18], [21]. Internet search engines use
ranking algorithms to measure the relative “importance” of
web pages. Such measurements are generally exploited, along
with other page features, by “horizontal” search engines, e.g.,
Google [18], or by personalized search engines (“vertical”
search engines; see, e.g., [22]) to sort the universal resource
locators (URLs) returned on user queries.2 Some attempts have
been made to extend these models with learning capabilities
such that a parametric model representing the behavior of
the system can be estimated from a set of training examples
extracted from a collection [22], [40], [41]. Those models are
able to generalize the results to score all the web pages in the
collection. More generally, several other statistical methods
have been proposed, which assume that the data set consists of
patterns and relationships between patterns. Those techniques
include random fields [42], Bayesian networks [43], statistical
relational learning [44], transductive learning [45], and semisu-
pervised approaches for graph processing [46].

In this paper, we present a supervised neural network model,
which is suitable for both graph and node-focused applications.
This model unifies these two existing models into a common

2The relative importance measure of a web page is also used to serve other
goals, e.g., to improve the efficiency of crawlers [39].

GNN

FRASCONI et al.: GENERAL FRAMEWORK FOR ADAPTIVE PROCESSING OF DATA STRUCTURES 769

Fig. 1. Typical chemical compound, naturally represented by an undirected
graph.

tionist models, that we refer to as recursive neural networks,1
while in the probabilist setting, hidden Markov models are
extended to hidden recursive models. Applications of adaptive
recursive processing are reviewed in Section V. Finally, some
guidelines for further development of the theory proposed in
this paper are outlined in Section VI.

A. Learning from Structured Information:
Application Domains
In several application domains, the information which is

relevant for solving a given problem is encoded, sometimes
implicitly, into the relationships between basic entities.
Example 1.1 Chemistry: Chemical compounds are usually

represented as undirected graphs. Each node of the graph is an
atom or a group of atoms, while arcs represent bonds between
atoms (see Fig. 1).
One fundamental problem in chemistry is the prediction of

the biological activity of chemical compounds. quantitative
structure-activity relationship (QSAR) is an attempt to face
the problem relying on compound structures. The biological
activity of a drug is fully determined by the micromechanism
of interaction of the active molecules with the bioreceptor.
Unfortunately, discovering this micromechanism is very hard
and expensive. Hence, because of the assumption that there is
a direct correlation between the activity and the structure of
the compound, the QSAR approach is a way of approaching
the problem by comparing the structure of all known active
compounds with inactive compounds, focusing on similarities
and differences between them. The aim is to discover which
substructure or which set of substructures characterize the
biomechanism of activity, so as to generalize this knowledge
to new compounds.
Example 1.2 Software Engineering: Another very impor-

tant example of an application which uses structured infor-
mation is certainly software engineering. One of the major
goals of software engineering is to evaluate the quality of the
software. This evaluation is usually based on metrics that are
correlated with properties of interest. A number of metrics
(see, e.g., McCabe complexity [2]) have been developed
which try to codify the above properties of a (portion of)
program numerically. These features are usually based on an
1As detailed in the following, recurrent neural networks and recursive

neural networks reduce to the same model when the domain is restricted to
sequences. For historical reasons, however, we shall use the name recurrent
neural networks when referring to models operating on sequences.

Fig. 2. A portion of software code with the corresponding flowgraph.
Metrics for the software evaluation turn out to be functions acting on
graph-based domains.

intermediate representation which has the advantage of being
(in some sense) independent of the specific language, while
preserving the essential static and dynamic aspects of the
program. One example of intermediate representation is given
by dependence graphs. In a dependence graph, statements
are represented as nodes, while directed edges are used to
represent the statement ordering implied by the dependencies
in a source program. Depending on the specific application,
different kinds of dependence graphs can be used (e.g., control
flow graphs, control dependence graphs, data dependence
graphs, and instance dependence graphs).
It is commonly accepted that most procedural languages

can be expressed as a flowgraph using a number of basic
elements, such as decision node, junction node, and begin and
end node [3]. Let be the set of flowgraphs derived by all
possible programs (see, e.g., Fig. 2). A software metric is
a function used to estimate the complexity of
a portion of software. The aim is to use as an indicator
of the quality, testability, reusability, and maintainability of
the program.
Example 1.3 Problem Solving in Artificial Intelligence: A

rich source of applications based on structured information
are those related to problem solving in artificial intelligence.
One often has to perform a search in a tree which typically
gives rise to a combinatorial explosion of the search space.
Examples of systems based on such expensive search are
theorem provers, deductive databases, and expert systems. For
all these systems we should search for a solution, or a proof,
by exploring every branch of the search tree defined by the
problem at hand (see, e.g., Fig. 13 in Section V-B). Exhaustive
search guarantees completeness, i.e., if there is a solution, it
will be found within finite time. This brute force approach,
however, is only practical and feasible for problems of small

physicochemical behavior

What are the features? The atoms, the bonds?

Structured Deep Models Thomas Kipf

Graph-structured data

#3

A lot of real-world data does not “live” on grids

Molecules

Social networks
Citation networks
Communication networks
Multi-agent systems

Protein interaction 
networks

Knowledge graphs

Protein Interaction Network

FRASCONI et al.: GENERAL FRAMEWORK FOR ADAPTIVE PROCESSING OF DATA STRUCTURES 769

Fig. 1. Typical chemical compound, naturally represented by an undirected
graph.

tionist models, that we refer to as recursive neural networks,1
while in the probabilist setting, hidden Markov models are
extended to hidden recursive models. Applications of adaptive
recursive processing are reviewed in Section V. Finally, some
guidelines for further development of the theory proposed in
this paper are outlined in Section VI.

A. Learning from Structured Information:
Application Domains
In several application domains, the information which is

relevant for solving a given problem is encoded, sometimes
implicitly, into the relationships between basic entities.
Example 1.1 Chemistry: Chemical compounds are usually

represented as undirected graphs. Each node of the graph is an
atom or a group of atoms, while arcs represent bonds between
atoms (see Fig. 1).
One fundamental problem in chemistry is the prediction of

the biological activity of chemical compounds. quantitative
structure-activity relationship (QSAR) is an attempt to face
the problem relying on compound structures. The biological
activity of a drug is fully determined by the micromechanism
of interaction of the active molecules with the bioreceptor.
Unfortunately, discovering this micromechanism is very hard
and expensive. Hence, because of the assumption that there is
a direct correlation between the activity and the structure of
the compound, the QSAR approach is a way of approaching
the problem by comparing the structure of all known active
compounds with inactive compounds, focusing on similarities
and differences between them. The aim is to discover which
substructure or which set of substructures characterize the
biomechanism of activity, so as to generalize this knowledge
to new compounds.
Example 1.2 Software Engineering: Another very impor-

tant example of an application which uses structured infor-
mation is certainly software engineering. One of the major
goals of software engineering is to evaluate the quality of the
software. This evaluation is usually based on metrics that are
correlated with properties of interest. A number of metrics
(see, e.g., McCabe complexity [2]) have been developed
which try to codify the above properties of a (portion of)
program numerically. These features are usually based on an
1As detailed in the following, recurrent neural networks and recursive

neural networks reduce to the same model when the domain is restricted to
sequences. For historical reasons, however, we shall use the name recurrent
neural networks when referring to models operating on sequences.

Fig. 2. A portion of software code with the corresponding flowgraph.
Metrics for the software evaluation turn out to be functions acting on
graph-based domains.

intermediate representation which has the advantage of being
(in some sense) independent of the specific language, while
preserving the essential static and dynamic aspects of the
program. One example of intermediate representation is given
by dependence graphs. In a dependence graph, statements
are represented as nodes, while directed edges are used to
represent the statement ordering implied by the dependencies
in a source program. Depending on the specific application,
different kinds of dependence graphs can be used (e.g., control
flow graphs, control dependence graphs, data dependence
graphs, and instance dependence graphs).
It is commonly accepted that most procedural languages

can be expressed as a flowgraph using a number of basic
elements, such as decision node, junction node, and begin and
end node [3]. Let be the set of flowgraphs derived by all
possible programs (see, e.g., Fig. 2). A software metric is
a function used to estimate the complexity of
a portion of software. The aim is to use as an indicator
of the quality, testability, reusability, and maintainability of
the program.
Example 1.3 Problem Solving in Artificial Intelligence: A

rich source of applications based on structured information
are those related to problem solving in artificial intelligence.
One often has to perform a search in a tree which typically
gives rise to a combinatorial explosion of the search space.
Examples of systems based on such expensive search are
theorem provers, deductive databases, and expert systems. For
all these systems we should search for a solution, or a proof,
by exploring every branch of the search tree defined by the
problem at hand (see, e.g., Fig. 13 in Section V-B). Exhaustive
search guarantees completeness, i.e., if there is a solution, it
will be found within finite time. This brute force approach,
however, is only practical and feasible for problems of small

Program behavior

On the truth of logic statements

62 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 1. Some applications where the information is represented by graphs: (a) a chemical compound (adrenaline), (b) an image, and (c) a subset of the web.

phase. The idea is to encode the underlying graph structured
data using the topological relationships among the nodes of the
graph, in order to incorporate graph structured information in
the data processing step. Recursive neural networks [17], [19],
[20] and Markov chains [18], [21], [22] belong to this set of tech-
niques and are commonly applied both to graph and node-fo-
cused problems. The method presented in this paper extends
these two approaches in that it can deal directly with graph struc-
tured information.

Existing recursive neural networks are neural network models
whose input domain consists of directed acyclic graphs [17],
[19], [20]. The method estimates the parameters of a func-
tion , which maps a graph to a vector of reals. The approach
can also be used for node-focused applications, but in this case,
the graph must undergo a preprocessing phase [23]. Similarly,
using a preprocessing phase, it is possible to handle certain types
of cyclic graphs [24]. Recursive neural networks have been ap-
plied to several problems including logical term classification
[25], chemical compound classification [26], logo recognition
[2], [27], web page scoring [28], and face localization [29].

Recursive neural networks are also related to support vector
machines [30]–[32], which adopt special kernels to operate on
graph structured data. For example, the diffusion kernel [33] is
based on heat diffusion equation; the kernels proposed in [34]
and [35] exploit the vectors produced by a graph random walker
and those designed in [36]–[38] use a method of counting the
number of common substructures of two trees. In fact, recursive
neural networks, similar to support vector machine methods,
automatically encode the input graph into an internal represen-
tation. However, in recursive neural networks, the internal en-

coding is learned, while in support vector machine, it is designed
by the user.

On the other hand, Markov chain models can emulate
processes where the causal connections among events are
represented by graphs. Recently, random walk theory, which
addresses a particular class of Markov chain models, has been
applied with some success to the realization of web page
ranking algorithms [18], [21]. Internet search engines use
ranking algorithms to measure the relative “importance” of
web pages. Such measurements are generally exploited, along
with other page features, by “horizontal” search engines, e.g.,
Google [18], or by personalized search engines (“vertical”
search engines; see, e.g., [22]) to sort the universal resource
locators (URLs) returned on user queries.2 Some attempts have
been made to extend these models with learning capabilities
such that a parametric model representing the behavior of
the system can be estimated from a set of training examples
extracted from a collection [22], [40], [41]. Those models are
able to generalize the results to score all the web pages in the
collection. More generally, several other statistical methods
have been proposed, which assume that the data set consists of
patterns and relationships between patterns. Those techniques
include random fields [42], Bayesian networks [43], statistical
relational learning [44], transductive learning [45], and semisu-
pervised approaches for graph processing [46].

In this paper, we present a supervised neural network model,
which is suitable for both graph and node-focused applications.
This model unifies these two existing models into a common

2The relative importance measure of a web page is also used to serve other
goals, e.g., to improve the efficiency of crawlers [39].

Structured patterns …

Pattern recognition community: enormous tradition
(e.g. syntactic pattern recognition, Horst Bunke, …)

Yet another one …

Another example: XY-trees for Document Analysis and Recognition

Social nets

Structured Deep Models Thomas Kipf

Graph-structured data

#3

A lot of real-world data does not “live” on grids

Social networks
Citation networks
Communication networks
Multi-agent systems

here we need to make prediction at node level!

Formulation of Learning Tasks

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009 61

The Graph Neural Network Model
Franco Scarselli, Marco Gori, Fellow, IEEE, Ah Chung Tsoi, Markus Hagenbuchner, Member, IEEE, and

Gabriele Monfardini

Abstract—Many underlying relationships among data in several
areas of science and engineering, e.g., computer vision, molec-
ular chemistry, molecular biology, pattern recognition, and data
mining, can be represented in terms of graphs. In this paper, we
propose a new neural network model, called graph neural network
(GNN) model, that extends existing neural network methods for
processing the data represented in graph domains. This GNN
model, which can directly process most of the practically useful
types of graphs, e.g., acyclic, cyclic, directed, and undirected,
implements a function that maps a graph
and one of its nodes into an -dimensional Euclidean space. A
supervised learning algorithm is derived to estimate the param-
eters of the proposed GNN model. The computational cost of the
proposed algorithm is also considered. Some experimental results
are shown to validate the proposed learning algorithm, and to
demonstrate its generalization capabilities.

Index Terms—Graphical domains, graph neural networks
(GNNs), graph processing, recursive neural networks.

I. INTRODUCTION

D ATA can be naturally represented by graph structures in
several application areas, including proteomics [1], image

analysis [2], scene description [3], [4], software engineering [5],
[6], and natural language processing [7]. The simplest kinds of
graph structures include single nodes and sequences. But in sev-
eral applications, the information is organized in more complex
graph structures such as trees, acyclic graphs, or cyclic graphs.
Traditionally, data relationships exploitation has been the sub-
ject of many studies in the community of inductive logic pro-
gramming and, recently, this research theme has been evolving
in different directions [8], also because of the applications of
relevant concepts in statistics and neural networks to such areas
(see, for example, the recent workshops [9]–[12]).

In machine learning, structured data is often associated with
the goal of (supervised or unsupervised) learning from exam-

Manuscript received May 24, 2007; revised January 08, 2008 and May 02,
2008; accepted June 15, 2008. First published December 09, 2008; current ver-
sion published January 05, 2009. This work was supported by the Australian
Research Council in the form of an International Research Exchange scheme
which facilitated the visit by F. Scarselli to University of Wollongong when the
initial work on this paper was performed. This work was also supported by the
ARC Linkage International Grant LX045446 and the ARC Discovery Project
Grant DP0453089.

F. Scarselli, M. Gori, and G. Monfardini are with the Faculty of Informa-
tion Engineering, University of Siena, Siena 53100, Italy (e-mail: franco@dii.
unisi.it; marco@dii.unisi.it; monfardini@dii.unisi.it).

A. C. Tsoi is with Hong Kong Baptist University, Kowloon, Hong Kong
(e-mail: act@hkbu.edu.hk).

M. Hagenbuchner is with the University of Wollongong, Wollongong, N.S.W.
2522, Australia (e-mail: markus@uow.edu.au).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2008.2005605

ples a function that maps a graph and one of its nodes to
a vector of reals1: . Applications to a graphical
domain can generally be divided into two broad classes, called
graph-focused and node-focused applications, respectively, in
this paper. In graph-focused applications, the function is in-
dependent of the node and implements a classifier or a re-
gressor on a graph structured data set. For example, a chemical
compound can be modeled by a graph , the nodes of which
stand for atoms (or chemical groups) and the edges of which
represent chemical bonds [see Fig. 1(a)] linking together some
of the atoms. The mapping may be used to estimate the
probability that the chemical compound causes a certain disease
[13]. In Fig. 1(b), an image is represented by a region adjacency
graph where nodes denote homogeneous regions of intensity of
the image and arcs represent their adjacency relationship [14]. In
this case, may be used to classify the image into different
classes according to its contents, e.g., castles, cars, people, and
so on.

In node-focused applications, depends on the node , so
that the classification (or the regression) depends on the proper-
ties of each node. Object detection is an example of this class of
applications. It consists of finding whether an image contains a
given object, and, if so, localizing its position [15]. This problem
can be solved by a function , which classifies the nodes of the
region adjacency graph according to whether the corresponding
region belongs to the object. For example, the output of for
Fig. 1(b) might be 1 for black nodes, which correspond to the
castle, and 0 otherwise. Another example comes from web page
classification. The web can be represented by a graph where
nodes stand for pages and edges represent the hyperlinks be-
tween them [Fig. 1(c)]. The web connectivity can be exploited,
along with page contents, for several purposes, e.g., classifying
the pages into a set of topics.

Traditional machine learning applications cope with graph
structured data by using a preprocessing phase which maps the
graph structured information to a simpler representation, e.g.,
vectors of reals [16]. In other words, the preprocessing step first
“squashes” the graph structured data into a vector of reals and
then deals with the preprocessed data using a list-based data
processing technique. However, important information, e.g., the
topological dependency of information on each node may be
lost during the preprocessing stage and the final result may de-
pend, in an unpredictable manner, on the details of the prepro-
cessing algorithm. More recently, there have been various ap-
proaches [17], [18] attempting to preserve the graph structured
nature of the data for as long as required before the processing

1Note that in most classification problems, the mapping is to a vector of inte-
gers , while in regression problems, the mapping is to a vector of reals .
Here, for simplicity of exposition, we will denote only the regression case. The
proposed formulation can be trivially rewritten for the situation of classification.

1045-9227/$25.00 © 2008 IEEE

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009 61

The Graph Neural Network Model
Franco Scarselli, Marco Gori, Fellow, IEEE, Ah Chung Tsoi, Markus Hagenbuchner, Member, IEEE, and

Gabriele Monfardini

Abstract—Many underlying relationships among data in several
areas of science and engineering, e.g., computer vision, molec-
ular chemistry, molecular biology, pattern recognition, and data
mining, can be represented in terms of graphs. In this paper, we
propose a new neural network model, called graph neural network
(GNN) model, that extends existing neural network methods for
processing the data represented in graph domains. This GNN
model, which can directly process most of the practically useful
types of graphs, e.g., acyclic, cyclic, directed, and undirected,
implements a function that maps a graph
and one of its nodes into an -dimensional Euclidean space. A
supervised learning algorithm is derived to estimate the param-
eters of the proposed GNN model. The computational cost of the
proposed algorithm is also considered. Some experimental results
are shown to validate the proposed learning algorithm, and to
demonstrate its generalization capabilities.

Index Terms—Graphical domains, graph neural networks
(GNNs), graph processing, recursive neural networks.

I. INTRODUCTION

D ATA can be naturally represented by graph structures in
several application areas, including proteomics [1], image

analysis [2], scene description [3], [4], software engineering [5],
[6], and natural language processing [7]. The simplest kinds of
graph structures include single nodes and sequences. But in sev-
eral applications, the information is organized in more complex
graph structures such as trees, acyclic graphs, or cyclic graphs.
Traditionally, data relationships exploitation has been the sub-
ject of many studies in the community of inductive logic pro-
gramming and, recently, this research theme has been evolving
in different directions [8], also because of the applications of
relevant concepts in statistics and neural networks to such areas
(see, for example, the recent workshops [9]–[12]).

In machine learning, structured data is often associated with
the goal of (supervised or unsupervised) learning from exam-

Manuscript received May 24, 2007; revised January 08, 2008 and May 02,
2008; accepted June 15, 2008. First published December 09, 2008; current ver-
sion published January 05, 2009. This work was supported by the Australian
Research Council in the form of an International Research Exchange scheme
which facilitated the visit by F. Scarselli to University of Wollongong when the
initial work on this paper was performed. This work was also supported by the
ARC Linkage International Grant LX045446 and the ARC Discovery Project
Grant DP0453089.

F. Scarselli, M. Gori, and G. Monfardini are with the Faculty of Informa-
tion Engineering, University of Siena, Siena 53100, Italy (e-mail: franco@dii.
unisi.it; marco@dii.unisi.it; monfardini@dii.unisi.it).

A. C. Tsoi is with Hong Kong Baptist University, Kowloon, Hong Kong
(e-mail: act@hkbu.edu.hk).

M. Hagenbuchner is with the University of Wollongong, Wollongong, N.S.W.
2522, Australia (e-mail: markus@uow.edu.au).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2008.2005605

ples a function that maps a graph and one of its nodes to
a vector of reals1: . Applications to a graphical
domain can generally be divided into two broad classes, called
graph-focused and node-focused applications, respectively, in
this paper. In graph-focused applications, the function is in-
dependent of the node and implements a classifier or a re-
gressor on a graph structured data set. For example, a chemical
compound can be modeled by a graph , the nodes of which
stand for atoms (or chemical groups) and the edges of which
represent chemical bonds [see Fig. 1(a)] linking together some
of the atoms. The mapping may be used to estimate the
probability that the chemical compound causes a certain disease
[13]. In Fig. 1(b), an image is represented by a region adjacency
graph where nodes denote homogeneous regions of intensity of
the image and arcs represent their adjacency relationship [14]. In
this case, may be used to classify the image into different
classes according to its contents, e.g., castles, cars, people, and
so on.

In node-focused applications, depends on the node , so
that the classification (or the regression) depends on the proper-
ties of each node. Object detection is an example of this class of
applications. It consists of finding whether an image contains a
given object, and, if so, localizing its position [15]. This problem
can be solved by a function , which classifies the nodes of the
region adjacency graph according to whether the corresponding
region belongs to the object. For example, the output of for
Fig. 1(b) might be 1 for black nodes, which correspond to the
castle, and 0 otherwise. Another example comes from web page
classification. The web can be represented by a graph where
nodes stand for pages and edges represent the hyperlinks be-
tween them [Fig. 1(c)]. The web connectivity can be exploited,
along with page contents, for several purposes, e.g., classifying
the pages into a set of topics.

Traditional machine learning applications cope with graph
structured data by using a preprocessing phase which maps the
graph structured information to a simpler representation, e.g.,
vectors of reals [16]. In other words, the preprocessing step first
“squashes” the graph structured data into a vector of reals and
then deals with the preprocessed data using a list-based data
processing technique. However, important information, e.g., the
topological dependency of information on each node may be
lost during the preprocessing stage and the final result may de-
pend, in an unpredictable manner, on the details of the prepro-
cessing algorithm. More recently, there have been various ap-
proaches [17], [18] attempting to preserve the graph structured
nature of the data for as long as required before the processing

1Note that in most classification problems, the mapping is to a vector of inte-
gers , while in regression problems, the mapping is to a vector of reals .
Here, for simplicity of exposition, we will denote only the regression case. The
proposed formulation can be trivially rewritten for the situation of classification.

1045-9227/$25.00 © 2008 IEEE

graphs as single patterns:
 classification, regression

node focussed
computation

GbR 2019

GRAPH NEURAL NETS

METHODS AND HISTORICAL ISSUES
Where do they come from?

?
62 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 1. Some applications where the information is represented by graphs: (a) a chemical compound (adrenaline), (b) an image, and (c) a subset of the web.

phase. The idea is to encode the underlying graph structured
data using the topological relationships among the nodes of the
graph, in order to incorporate graph structured information in
the data processing step. Recursive neural networks [17], [19],
[20] and Markov chains [18], [21], [22] belong to this set of tech-
niques and are commonly applied both to graph and node-fo-
cused problems. The method presented in this paper extends
these two approaches in that it can deal directly with graph struc-
tured information.

Existing recursive neural networks are neural network models
whose input domain consists of directed acyclic graphs [17],
[19], [20]. The method estimates the parameters of a func-
tion , which maps a graph to a vector of reals. The approach
can also be used for node-focused applications, but in this case,
the graph must undergo a preprocessing phase [23]. Similarly,
using a preprocessing phase, it is possible to handle certain types
of cyclic graphs [24]. Recursive neural networks have been ap-
plied to several problems including logical term classification
[25], chemical compound classification [26], logo recognition
[2], [27], web page scoring [28], and face localization [29].

Recursive neural networks are also related to support vector
machines [30]–[32], which adopt special kernels to operate on
graph structured data. For example, the diffusion kernel [33] is
based on heat diffusion equation; the kernels proposed in [34]
and [35] exploit the vectors produced by a graph random walker
and those designed in [36]–[38] use a method of counting the
number of common substructures of two trees. In fact, recursive
neural networks, similar to support vector machine methods,
automatically encode the input graph into an internal represen-
tation. However, in recursive neural networks, the internal en-

coding is learned, while in support vector machine, it is designed
by the user.

On the other hand, Markov chain models can emulate
processes where the causal connections among events are
represented by graphs. Recently, random walk theory, which
addresses a particular class of Markov chain models, has been
applied with some success to the realization of web page
ranking algorithms [18], [21]. Internet search engines use
ranking algorithms to measure the relative “importance” of
web pages. Such measurements are generally exploited, along
with other page features, by “horizontal” search engines, e.g.,
Google [18], or by personalized search engines (“vertical”
search engines; see, e.g., [22]) to sort the universal resource
locators (URLs) returned on user queries.2 Some attempts have
been made to extend these models with learning capabilities
such that a parametric model representing the behavior of
the system can be estimated from a set of training examples
extracted from a collection [22], [40], [41]. Those models are
able to generalize the results to score all the web pages in the
collection. More generally, several other statistical methods
have been proposed, which assume that the data set consists of
patterns and relationships between patterns. Those techniques
include random fields [42], Bayesian networks [43], statistical
relational learning [44], transductive learning [45], and semisu-
pervised approaches for graph processing [46].

In this paper, we present a supervised neural network model,
which is suitable for both graph and node-focused applications.
This model unifies these two existing models into a common

2The relative importance measure of a web page is also used to serve other
goals, e.g., to improve the efficiency of crawlers [39].

GNN

“diffusion” machines …

Embedding a graph

! The mapping of a graph to a real valued vector can be implemented
by concatenating the features stored in each node, following an
order derived from the connection topology

Drawbacks:

! All the input graphs should have the same number of nodes or, at
least, a maximum cardinality must be chosen for this set

! The encoding of the topology by the position of the node inside the
vector is not well dened for any category of graph – it holds for
Directed Ordered Acyclic Graphs (DOAGs), this does not hold for
generic cyclic graphs

Node-based encoding

we could choose an “appropriate window”

Information diffusion and causality

Directed Ordered Acyclic Graphs

State-based representation ordering of children state does m
atter!

Reduction to sequences

The case of binary trees …

Generalized shift-operator

Encoding networks

Encoding nets for binary trees

Data structures + recursive nets = encoding nets

Using neural nets
for sequences …

Time unfolding

Using neural nets
for binary trees …

Structure (graph) unfolding

a

b c

d e f

Backpropagation through structure

Weight sharing …

Non-stationary transductions

Compiling …
The input tree is mapped to one with different structure!

SCARSELLI et al.: THE GRAPH NEURAL NETWORK MODEL 65

Fig. 3. Graph (on the top), the corresponding encoding network (in the middle), and the network obtained by unfolding the encoding network (at the bottom).
The nodes (the circles) of the graph are replaced, in the encoding network, by units computing and (the squares). When and are implemented by
feedforward neural networks, the encoding network is a recurrent neural network. In the unfolding network, each layer corresponds to a time instant and contains
a copy of all the units of the encoding network. Connections between layers depend on encoding network connectivity.

2) a learning algorithm to adapt and using examples
from the training data set5;

3) an implementation of and .
These aspects will be considered in turn in the following
sections.

B. Computation of the State

Banach’s fixed point theorem [53] does not only ensure the
existence and the uniqueness of the solution of (1) but it also
suggests the following classic iterative scheme for computing
the state:

(4)

5In other words, the parameters are estimated using examples contained in
the training data set.

where denotes the th iteration of . The dynamical system
(4) converges exponentially fast to the solution of (2) for any ini-
tial value . We can, therefore, think of as the state that
is updated by the transition function . In fact, (4) implements
the Jacobi iterative method for solving nonlinear equations [55].
Thus, the outputs and the states can be computed by iterating

(5)

Note that the computation described in (5) can be interpreted
as the representation of a network consisting of units, which
compute and . Such a network will be called an encoding
network, following an analog terminology used for the recursive

What if DOAG assumption is lost?

When ordering is lost, the previous data flow
computational scheme cannot be established:

We need a different diffusion process!

It’s the general case which originated the term GNN!

64 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 2. Graph and the neighborhood of a node. The state of the node 1
depends on the information contained in its neighborhood.

to each node that is based on the information con-
tained in the neighborhood of (see Fig. 2). The state con-
tains a representation of the concept denoted by and can be
used to produce an output , i.e., a decision about the concept.

Let be a parametric function, called local transition func-
tion, that expresses the dependence of a node on its neighbor-
hood and let be the local output function that describes how
the output is produced. Then, and are defined as follows:

(1)

where , , , and are the label of , the labels
of its edges, the states, and the labels of the nodes in the neigh-
borhood of , respectively.

Remark 1: Different notions of neighborhood can be adopted.
For example, one may wish to remove the labels , since
they include information that is implicitly contained in .
Moreover, the neighborhood could contain nodes that are two
or more links away from . In general, (1) could be simplified
in several different ways and several minimal models4 exist. In
the following, the discussion will mainly be based on the form
defined by (1), which is not minimal, but it is the one that more
closely represents our intuitive notion of neighborhood.

Remark 2: Equation (1) is customized for undirected graphs.
When dealing with directed graphs, the function can also ac-
cept as input a representation of the direction of the arcs. For ex-
ample, may take as input a variable for each arc
such that , if is directed towards and , if
comes from . In the following, in order to keep the notations
compact, we maintain the customization of (1). However, un-
less explicitly stated, all the results proposed in this paper hold

4A model is said to be minimal if it has the smallest number of variables while
retaining the same computational power.

also for directed graphs and for graphs with mixed directed and
undirected links.

Remark 3: In general, the transition and the output functions
and their parameters may depend on the node . In fact, it is
plausible that different mechanisms (implementations) are used
to represent different kinds of objects. In this case, each kind of
nodes has its own transition function , output function

, and a set of parameters . Thus, (1) becomes
and .

However, for the sake of simplicity, our analysis will consider
(1) that describes a particular model where all the nodes share
the same implementation.

Let , , , and be the vectors constructed by stacking all
the states, all the outputs, all the labels, and all the node labels,
respectively. Then, (1) can be rewritten in a compact form as

(2)

where , the global transition function and , the global
output function are stacked versions of instances of and

, respectively.
We are interested in the case when are uniquely defined

and (2) defines a map , which takes a graph
as input and returns an output for each node. The Banach
fixed point theorem [53] provides a sufficient condition for the
existence and uniqueness of the solution of a system of equa-
tions. According to Banach’s theorem [53], (2) has a unique so-
lution provided that is a contraction map with respect to the
state, i.e., there exists , , such that

holds for any , where denotes
a vectorial norm. Thus, for the moment, let us assume that
is a contraction map. Later, we will show that, in GNNs, this
property is enforced by an appropriate implementation of the
transition function.

Note that (1) makes it possible to process both positional and
nonpositional graphs. For positional graphs, must receive the
positions of the neighbors as additional inputs. In practice, this
can be easily achieved provided that information contained in

, , and is sorted according to neighbors’ po-
sitions and is properly padded with special null values in po-
sitions corresponding to nonexisting neighbors. For example,

, where is the max-
imal number of neighbors of a node; holds, if is the
th neighbor of ; and , for some prede-

fined null state , if there is no th neighbor.
However, for nonpositional graphs, it is useful to replace

function of (1) with

(3)

where is a parametric function. This transition function,
which has been successfully used in recursive neural networks
[54], is not affected by the positions and the number of the chil-
dren. In the following, (3) is referred to as the nonpositional
form, while (1) is called the positional form. In order to imple-
ment the GNN model, the following items must be provided:

1) a method to solve (1);

64 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 2. Graph and the neighborhood of a node. The state of the node 1
depends on the information contained in its neighborhood.

to each node that is based on the information con-
tained in the neighborhood of (see Fig. 2). The state con-
tains a representation of the concept denoted by and can be
used to produce an output , i.e., a decision about the concept.

Let be a parametric function, called local transition func-
tion, that expresses the dependence of a node on its neighbor-
hood and let be the local output function that describes how
the output is produced. Then, and are defined as follows:

(1)

where , , , and are the label of , the labels
of its edges, the states, and the labels of the nodes in the neigh-
borhood of , respectively.

Remark 1: Different notions of neighborhood can be adopted.
For example, one may wish to remove the labels , since
they include information that is implicitly contained in .
Moreover, the neighborhood could contain nodes that are two
or more links away from . In general, (1) could be simplified
in several different ways and several minimal models4 exist. In
the following, the discussion will mainly be based on the form
defined by (1), which is not minimal, but it is the one that more
closely represents our intuitive notion of neighborhood.

Remark 2: Equation (1) is customized for undirected graphs.
When dealing with directed graphs, the function can also ac-
cept as input a representation of the direction of the arcs. For ex-
ample, may take as input a variable for each arc
such that , if is directed towards and , if
comes from . In the following, in order to keep the notations
compact, we maintain the customization of (1). However, un-
less explicitly stated, all the results proposed in this paper hold

4A model is said to be minimal if it has the smallest number of variables while
retaining the same computational power.

also for directed graphs and for graphs with mixed directed and
undirected links.

Remark 3: In general, the transition and the output functions
and their parameters may depend on the node . In fact, it is
plausible that different mechanisms (implementations) are used
to represent different kinds of objects. In this case, each kind of
nodes has its own transition function , output function

, and a set of parameters . Thus, (1) becomes
and .

However, for the sake of simplicity, our analysis will consider
(1) that describes a particular model where all the nodes share
the same implementation.

Let , , , and be the vectors constructed by stacking all
the states, all the outputs, all the labels, and all the node labels,
respectively. Then, (1) can be rewritten in a compact form as

(2)

where , the global transition function and , the global
output function are stacked versions of instances of and

, respectively.
We are interested in the case when are uniquely defined

and (2) defines a map , which takes a graph
as input and returns an output for each node. The Banach
fixed point theorem [53] provides a sufficient condition for the
existence and uniqueness of the solution of a system of equa-
tions. According to Banach’s theorem [53], (2) has a unique so-
lution provided that is a contraction map with respect to the
state, i.e., there exists , , such that

holds for any , where denotes
a vectorial norm. Thus, for the moment, let us assume that
is a contraction map. Later, we will show that, in GNNs, this
property is enforced by an appropriate implementation of the
transition function.

Note that (1) makes it possible to process both positional and
nonpositional graphs. For positional graphs, must receive the
positions of the neighbors as additional inputs. In practice, this
can be easily achieved provided that information contained in

, , and is sorted according to neighbors’ po-
sitions and is properly padded with special null values in po-
sitions corresponding to nonexisting neighbors. For example,

, where is the max-
imal number of neighbors of a node; holds, if is the
th neighbor of ; and , for some prede-

fined null state , if there is no th neighbor.
However, for nonpositional graphs, it is useful to replace

function of (1) with

(3)

where is a parametric function. This transition function,
which has been successfully used in recursive neural networks
[54], is not affected by the positions and the number of the chil-
dren. In the following, (3) is referred to as the nonpositional
form, while (1) is called the positional form. In order to imple-
ment the GNN model, the following items must be provided:

1) a method to solve (1);

64 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 2. Graph and the neighborhood of a node. The state of the node 1
depends on the information contained in its neighborhood.

to each node that is based on the information con-
tained in the neighborhood of (see Fig. 2). The state con-
tains a representation of the concept denoted by and can be
used to produce an output , i.e., a decision about the concept.

Let be a parametric function, called local transition func-
tion, that expresses the dependence of a node on its neighbor-
hood and let be the local output function that describes how
the output is produced. Then, and are defined as follows:

(1)

where , , , and are the label of , the labels
of its edges, the states, and the labels of the nodes in the neigh-
borhood of , respectively.

Remark 1: Different notions of neighborhood can be adopted.
For example, one may wish to remove the labels , since
they include information that is implicitly contained in .
Moreover, the neighborhood could contain nodes that are two
or more links away from . In general, (1) could be simplified
in several different ways and several minimal models4 exist. In
the following, the discussion will mainly be based on the form
defined by (1), which is not minimal, but it is the one that more
closely represents our intuitive notion of neighborhood.

Remark 2: Equation (1) is customized for undirected graphs.
When dealing with directed graphs, the function can also ac-
cept as input a representation of the direction of the arcs. For ex-
ample, may take as input a variable for each arc
such that , if is directed towards and , if
comes from . In the following, in order to keep the notations
compact, we maintain the customization of (1). However, un-
less explicitly stated, all the results proposed in this paper hold

4A model is said to be minimal if it has the smallest number of variables while
retaining the same computational power.

also for directed graphs and for graphs with mixed directed and
undirected links.

Remark 3: In general, the transition and the output functions
and their parameters may depend on the node . In fact, it is
plausible that different mechanisms (implementations) are used
to represent different kinds of objects. In this case, each kind of
nodes has its own transition function , output function

, and a set of parameters . Thus, (1) becomes
and .

However, for the sake of simplicity, our analysis will consider
(1) that describes a particular model where all the nodes share
the same implementation.

Let , , , and be the vectors constructed by stacking all
the states, all the outputs, all the labels, and all the node labels,
respectively. Then, (1) can be rewritten in a compact form as

(2)

where , the global transition function and , the global
output function are stacked versions of instances of and

, respectively.
We are interested in the case when are uniquely defined

and (2) defines a map , which takes a graph
as input and returns an output for each node. The Banach
fixed point theorem [53] provides a sufficient condition for the
existence and uniqueness of the solution of a system of equa-
tions. According to Banach’s theorem [53], (2) has a unique so-
lution provided that is a contraction map with respect to the
state, i.e., there exists , , such that

holds for any , where denotes
a vectorial norm. Thus, for the moment, let us assume that
is a contraction map. Later, we will show that, in GNNs, this
property is enforced by an appropriate implementation of the
transition function.

Note that (1) makes it possible to process both positional and
nonpositional graphs. For positional graphs, must receive the
positions of the neighbors as additional inputs. In practice, this
can be easily achieved provided that information contained in

, , and is sorted according to neighbors’ po-
sitions and is properly padded with special null values in po-
sitions corresponding to nonexisting neighbors. For example,

, where is the max-
imal number of neighbors of a node; holds, if is the
th neighbor of ; and , for some prede-

fined null state , if there is no th neighbor.
However, for nonpositional graphs, it is useful to replace

function of (1) with

(3)

where is a parametric function. This transition function,
which has been successfully used in recursive neural networks
[54], is not affected by the positions and the number of the chil-
dren. In the following, (3) is referred to as the nonpositional
form, while (1) is called the positional form. In order to imple-
ment the GNN model, the following items must be provided:

1) a method to solve (1);

Neighbor-based computation

equilibrium
 configuration!

node label connection label neighbor labelneighbor state

64 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 2. Graph and the neighborhood of a node. The state of the node 1
depends on the information contained in its neighborhood.

to each node that is based on the information con-
tained in the neighborhood of (see Fig. 2). The state con-
tains a representation of the concept denoted by and can be
used to produce an output , i.e., a decision about the concept.

Let be a parametric function, called local transition func-
tion, that expresses the dependence of a node on its neighbor-
hood and let be the local output function that describes how
the output is produced. Then, and are defined as follows:

(1)

where , , , and are the label of , the labels
of its edges, the states, and the labels of the nodes in the neigh-
borhood of , respectively.

Remark 1: Different notions of neighborhood can be adopted.
For example, one may wish to remove the labels , since
they include information that is implicitly contained in .
Moreover, the neighborhood could contain nodes that are two
or more links away from . In general, (1) could be simplified
in several different ways and several minimal models4 exist. In
the following, the discussion will mainly be based on the form
defined by (1), which is not minimal, but it is the one that more
closely represents our intuitive notion of neighborhood.

Remark 2: Equation (1) is customized for undirected graphs.
When dealing with directed graphs, the function can also ac-
cept as input a representation of the direction of the arcs. For ex-
ample, may take as input a variable for each arc
such that , if is directed towards and , if
comes from . In the following, in order to keep the notations
compact, we maintain the customization of (1). However, un-
less explicitly stated, all the results proposed in this paper hold

4A model is said to be minimal if it has the smallest number of variables while
retaining the same computational power.

also for directed graphs and for graphs with mixed directed and
undirected links.

Remark 3: In general, the transition and the output functions
and their parameters may depend on the node . In fact, it is
plausible that different mechanisms (implementations) are used
to represent different kinds of objects. In this case, each kind of
nodes has its own transition function , output function

, and a set of parameters . Thus, (1) becomes
and .

However, for the sake of simplicity, our analysis will consider
(1) that describes a particular model where all the nodes share
the same implementation.

Let , , , and be the vectors constructed by stacking all
the states, all the outputs, all the labels, and all the node labels,
respectively. Then, (1) can be rewritten in a compact form as

(2)

where , the global transition function and , the global
output function are stacked versions of instances of and

, respectively.
We are interested in the case when are uniquely defined

and (2) defines a map , which takes a graph
as input and returns an output for each node. The Banach
fixed point theorem [53] provides a sufficient condition for the
existence and uniqueness of the solution of a system of equa-
tions. According to Banach’s theorem [53], (2) has a unique so-
lution provided that is a contraction map with respect to the
state, i.e., there exists , , such that

holds for any , where denotes
a vectorial norm. Thus, for the moment, let us assume that
is a contraction map. Later, we will show that, in GNNs, this
property is enforced by an appropriate implementation of the
transition function.

Note that (1) makes it possible to process both positional and
nonpositional graphs. For positional graphs, must receive the
positions of the neighbors as additional inputs. In practice, this
can be easily achieved provided that information contained in

, , and is sorted according to neighbors’ po-
sitions and is properly padded with special null values in po-
sitions corresponding to nonexisting neighbors. For example,

, where is the max-
imal number of neighbors of a node; holds, if is the
th neighbor of ; and , for some prede-

fined null state , if there is no th neighbor.
However, for nonpositional graphs, it is useful to replace

function of (1) with

(3)

where is a parametric function. This transition function,
which has been successfully used in recursive neural networks
[54], is not affected by the positions and the number of the chil-
dren. In the following, (3) is referred to as the nonpositional
form, while (1) is called the positional form. In order to imple-
ment the GNN model, the following items must be provided:

1) a method to solve (1);

Non-positional graphs
in many cases …

SCARSELLI et al.: THE GRAPH NEURAL NETWORK MODEL 65

Fig. 3. Graph (on the top), the corresponding encoding network (in the middle), and the network obtained by unfolding the encoding network (at the bottom).
The nodes (the circles) of the graph are replaced, in the encoding network, by units computing and (the squares). When and are implemented by
feedforward neural networks, the encoding network is a recurrent neural network. In the unfolding network, each layer corresponds to a time instant and contains
a copy of all the units of the encoding network. Connections between layers depend on encoding network connectivity.

2) a learning algorithm to adapt and using examples
from the training data set5;

3) an implementation of and .
These aspects will be considered in turn in the following
sections.

B. Computation of the State

Banach’s fixed point theorem [53] does not only ensure the
existence and the uniqueness of the solution of (1) but it also
suggests the following classic iterative scheme for computing
the state:

(4)

5In other words, the parameters are estimated using examples contained in
the training data set.

where denotes the th iteration of . The dynamical system
(4) converges exponentially fast to the solution of (2) for any ini-
tial value . We can, therefore, think of as the state that
is updated by the transition function . In fact, (4) implements
the Jacobi iterative method for solving nonlinear equations [55].
Thus, the outputs and the states can be computed by iterating

(5)

Note that the computation described in (5) can be interpreted
as the representation of a network consisting of units, which
compute and . Such a network will be called an encoding
network, following an analog terminology used for the recursive

permutation-independent

diffusion-based computation similar to PageRank

SCARSELLI et al.: THE GRAPH NEURAL NETWORK MODEL 65

Fig. 3. Graph (on the top), the corresponding encoding network (in the middle), and the network obtained by unfolding the encoding network (at the bottom).
The nodes (the circles) of the graph are replaced, in the encoding network, by units computing and (the squares). When and are implemented by
feedforward neural networks, the encoding network is a recurrent neural network. In the unfolding network, each layer corresponds to a time instant and contains
a copy of all the units of the encoding network. Connections between layers depend on encoding network connectivity.

2) a learning algorithm to adapt and using examples
from the training data set5;

3) an implementation of and .
These aspects will be considered in turn in the following
sections.

B. Computation of the State

Banach’s fixed point theorem [53] does not only ensure the
existence and the uniqueness of the solution of (1) but it also
suggests the following classic iterative scheme for computing
the state:

(4)

5In other words, the parameters are estimated using examples contained in
the training data set.

where denotes the th iteration of . The dynamical system
(4) converges exponentially fast to the solution of (2) for any ini-
tial value . We can, therefore, think of as the state that
is updated by the transition function . In fact, (4) implements
the Jacobi iterative method for solving nonlinear equations [55].
Thus, the outputs and the states can be computed by iterating

(5)

Note that the computation described in (5) can be interpreted
as the representation of a network consisting of units, which
compute and . Such a network will be called an encoding
network, following an analog terminology used for the recursive

Graph compiling …

SCARSELLI et al.: THE GRAPH NEURAL NETWORK MODEL 65

Fig. 3. Graph (on the top), the corresponding encoding network (in the middle), and the network obtained by unfolding the encoding network (at the bottom).
The nodes (the circles) of the graph are replaced, in the encoding network, by units computing and (the squares). When and are implemented by
feedforward neural networks, the encoding network is a recurrent neural network. In the unfolding network, each layer corresponds to a time instant and contains
a copy of all the units of the encoding network. Connections between layers depend on encoding network connectivity.

2) a learning algorithm to adapt and using examples
from the training data set5;

3) an implementation of and .
These aspects will be considered in turn in the following
sections.

B. Computation of the State

Banach’s fixed point theorem [53] does not only ensure the
existence and the uniqueness of the solution of (1) but it also
suggests the following classic iterative scheme for computing
the state:

(4)

5In other words, the parameters are estimated using examples contained in
the training data set.

where denotes the th iteration of . The dynamical system
(4) converges exponentially fast to the solution of (2) for any ini-
tial value . We can, therefore, think of as the state that
is updated by the transition function . In fact, (4) implements
the Jacobi iterative method for solving nonlinear equations [55].
Thus, the outputs and the states can be computed by iterating

(5)

Note that the computation described in (5) can be interpreted
as the representation of a network consisting of units, which
compute and . Such a network will be called an encoding
network, following an analog terminology used for the recursive

How we get the equilibrium points?

R
elaxation to an equilibrium

SCARSELLI et al.: THE GRAPH NEURAL NETWORK MODEL 65

Fig. 3. Graph (on the top), the corresponding encoding network (in the middle), and the network obtained by unfolding the encoding network (at the bottom).
The nodes (the circles) of the graph are replaced, in the encoding network, by units computing and (the squares). When and are implemented by
feedforward neural networks, the encoding network is a recurrent neural network. In the unfolding network, each layer corresponds to a time instant and contains
a copy of all the units of the encoding network. Connections between layers depend on encoding network connectivity.

2) a learning algorithm to adapt and using examples
from the training data set5;

3) an implementation of and .
These aspects will be considered in turn in the following
sections.

B. Computation of the State

Banach’s fixed point theorem [53] does not only ensure the
existence and the uniqueness of the solution of (1) but it also
suggests the following classic iterative scheme for computing
the state:

(4)

5In other words, the parameters are estimated using examples contained in
the training data set.

where denotes the th iteration of . The dynamical system
(4) converges exponentially fast to the solution of (2) for any ini-
tial value . We can, therefore, think of as the state that
is updated by the transition function . In fact, (4) implements
the Jacobi iterative method for solving nonlinear equations [55].
Thus, the outputs and the states can be computed by iterating

(5)

Note that the computation described in (5) can be interpreted
as the representation of a network consisting of units, which
compute and . Such a network will be called an encoding
network, following an analog terminology used for the recursive

SCARSELLI et al.: THE GRAPH NEURAL NETWORK MODEL 65

Fig. 3. Graph (on the top), the corresponding encoding network (in the middle), and the network obtained by unfolding the encoding network (at the bottom).
The nodes (the circles) of the graph are replaced, in the encoding network, by units computing and (the squares). When and are implemented by
feedforward neural networks, the encoding network is a recurrent neural network. In the unfolding network, each layer corresponds to a time instant and contains
a copy of all the units of the encoding network. Connections between layers depend on encoding network connectivity.

2) a learning algorithm to adapt and using examples
from the training data set5;

3) an implementation of and .
These aspects will be considered in turn in the following
sections.

B. Computation of the State

Banach’s fixed point theorem [53] does not only ensure the
existence and the uniqueness of the solution of (1) but it also
suggests the following classic iterative scheme for computing
the state:

(4)

5In other words, the parameters are estimated using examples contained in
the training data set.

where denotes the th iteration of . The dynamical system
(4) converges exponentially fast to the solution of (2) for any ini-
tial value . We can, therefore, think of as the state that
is updated by the transition function . In fact, (4) implements
the Jacobi iterative method for solving nonlinear equations [55].
Thus, the outputs and the states can be computed by iterating

(5)

Note that the computation described in (5) can be interpreted
as the representation of a network consisting of units, which
compute and . Such a network will be called an encoding
network, following an analog terminology used for the recursive

66 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

neural network model [17]. In order to build the encoding net-
work, each node of the graph is replaced by a unit computing the
function (see Fig. 3). Each unit stores the current state
of node , and, when activated, it calculates the state
using the node label and the information stored in the neigh-
borhood. The simultaneous and repeated activation of the units
produce the behavior described in (5). The output of node is
produced by another unit, which implements .

When and are implemented by feedforward neural net-
works, the encoding network turns out to be a recurrent neural
network where the connections between the neurons can be di-
vided into internal and external connections. The internal con-
nectivity is determined by the neural network architecture used
to implement the unit. The external connectivity depends on the
edges of the processed graph.

C. The Learning Algorithm

Learning in GNNs consists of estimating the parameter
such that approximates the data in the learning data set

where is the number of supervised nodes in . For graph-fo-
cused tasks, one special node is used for the target (
holds), whereas for node-focused tasks, in principle, the super-
vision can be performed on every node. The learning task can
be posed as the minimization of a quadratic cost function

(6)

Remark 4: As common in neural network applications, the
cost function may include a penalty term to control other prop-
erties of the model. For example, the cost function may contain
a smoothing factor to penalize any abrupt changes of the outputs
and to improve the generalization performance.

The learning algorithm is based on a gradient-descent
strategy and is composed of the following steps.

a) The states are iteratively updated by (5) until at time
they approach the fixed point solution of (2): .

b) The gradient is computed.
c) The weights are updated according to the gradient com-

puted in step b).
Concerning step a), note that the hypothesis that is a

contraction map ensures the convergence to the fixed point.
Step c) is carried out within the traditional framework of gra-
dient descent. As shown in the following, step b) can be carried
out in a very efficient way by exploiting the diffusion process
that takes place in GNNs. Interestingly, this diffusion process
is very much related to the one which takes place in recurrent
neural networks, for which the gradient computation is based
on backpropagation-through-time algorithm [17], [56], [57]. In
this case, the encoding network is unfolded from time back to
an initial time . The unfolding produces the layered network
shown in Fig. 3. Each layer corresponds to a time instant and
contains a copy of all the units of the encoding network. The
units of two consecutive layers are connected following graph
connectivity. The last layer corresponding to time includes

also the units and computes the output of the network.
Backpropagation through time consists of carrying out the
traditional backpropagation step on the unfolded network to
compute the gradient of the cost function at time with respect
to (w.r.t.) all the instances of and . Then, is
obtained by summing the gradients of all instances. However,
backpropagation through time requires to store the states of
every instance of the units. When the graphs and are
large, the memory required may be considerable.6 On the
other hand, in our case, a more efficient approach is possible,
based on the Almeida–Pineda algorithm [58], [59]. Since (5)
has reached a stable point before the gradient computation,
we can assume that holds for any . Thus,
backpropagation through time can be carried out by storing
only . The following two theorems show that such an intuitive
approach has a formal justification. The former theorem proves
that function is differentiable.

Theorem 1 (Differentiability): Let and be the
global transition and the global output functions of a GNN,
respectively. If and are continuously differ-
entiable w.r.t. and , then is continuously differentiable
w.r.t. .

Proof: Let a function be defined as
Such a function is continuously differ-

entiable w.r.t. and , since it is the difference of
two continuously differentiable functions. Note that the
Jacobian matrix of w.r.t. fulfills

where de-
notes the -dimensional identity matrix and , is
the dimension of the state. Since is a contraction map,
there exists such that ,
which implies . Thus, the de-
terminant of is not null and we can apply the
implicit function theorem (see [60]) to and point . As
a consequence, there exists a function , which is defined
and continuously differentiable in a neighborhood of , such
that and Since this
result holds for any , it is demonstrated that is continu-
ously differentiable on the whole domain. Finally, note that

, where denotes the operator
that returns the components corresponding to node . Thus,

is the composition of differentiable functions and hence is
itself differentiable.

It is worth mentioning that this property does not hold for
general dynamical systems for which a slight change in the pa-
rameters can force the transition from one fixed point to another.
The fact that is differentiable in GNNs is due to the assump-
tion that is a contraction map. The next theorem provides a
method for an efficient computation of the gradient.

Theorem 2 (Backpropagation): Let and be the tran-
sition and the output functions of a GNN, respectively, and as-
sume that and are continuously differen-
tiable w.r.t. and . Let be defined by

(7)

6For internet applications, the graph may represent a significant portion of
the web. This is an example of cases when the amount of the required memory
storage may play a very important role.

SCARSELLI et al.: THE GRAPH NEURAL NETWORK MODEL 65

Fig. 3. Graph (on the top), the corresponding encoding network (in the middle), and the network obtained by unfolding the encoding network (at the bottom).
The nodes (the circles) of the graph are replaced, in the encoding network, by units computing and (the squares). When and are implemented by
feedforward neural networks, the encoding network is a recurrent neural network. In the unfolding network, each layer corresponds to a time instant and contains
a copy of all the units of the encoding network. Connections between layers depend on encoding network connectivity.

2) a learning algorithm to adapt and using examples
from the training data set5;

3) an implementation of and .
These aspects will be considered in turn in the following
sections.

B. Computation of the State

Banach’s fixed point theorem [53] does not only ensure the
existence and the uniqueness of the solution of (1) but it also
suggests the following classic iterative scheme for computing
the state:

(4)

5In other words, the parameters are estimated using examples contained in
the training data set.

where denotes the th iteration of . The dynamical system
(4) converges exponentially fast to the solution of (2) for any ini-
tial value . We can, therefore, think of as the state that
is updated by the transition function . In fact, (4) implements
the Jacobi iterative method for solving nonlinear equations [55].
Thus, the outputs and the states can be computed by iterating

(5)

Note that the computation described in (5) can be interpreted
as the representation of a network consisting of units, which
compute and . Such a network will be called an encoding
network, following an analog terminology used for the recursive

64 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 2. Graph and the neighborhood of a node. The state of the node 1
depends on the information contained in its neighborhood.

to each node that is based on the information con-
tained in the neighborhood of (see Fig. 2). The state con-
tains a representation of the concept denoted by and can be
used to produce an output , i.e., a decision about the concept.

Let be a parametric function, called local transition func-
tion, that expresses the dependence of a node on its neighbor-
hood and let be the local output function that describes how
the output is produced. Then, and are defined as follows:

(1)

where , , , and are the label of , the labels
of its edges, the states, and the labels of the nodes in the neigh-
borhood of , respectively.

Remark 1: Different notions of neighborhood can be adopted.
For example, one may wish to remove the labels , since
they include information that is implicitly contained in .
Moreover, the neighborhood could contain nodes that are two
or more links away from . In general, (1) could be simplified
in several different ways and several minimal models4 exist. In
the following, the discussion will mainly be based on the form
defined by (1), which is not minimal, but it is the one that more
closely represents our intuitive notion of neighborhood.

Remark 2: Equation (1) is customized for undirected graphs.
When dealing with directed graphs, the function can also ac-
cept as input a representation of the direction of the arcs. For ex-
ample, may take as input a variable for each arc
such that , if is directed towards and , if
comes from . In the following, in order to keep the notations
compact, we maintain the customization of (1). However, un-
less explicitly stated, all the results proposed in this paper hold

4A model is said to be minimal if it has the smallest number of variables while
retaining the same computational power.

also for directed graphs and for graphs with mixed directed and
undirected links.

Remark 3: In general, the transition and the output functions
and their parameters may depend on the node . In fact, it is
plausible that different mechanisms (implementations) are used
to represent different kinds of objects. In this case, each kind of
nodes has its own transition function , output function

, and a set of parameters . Thus, (1) becomes
and .

However, for the sake of simplicity, our analysis will consider
(1) that describes a particular model where all the nodes share
the same implementation.

Let , , , and be the vectors constructed by stacking all
the states, all the outputs, all the labels, and all the node labels,
respectively. Then, (1) can be rewritten in a compact form as

(2)

where , the global transition function and , the global
output function are stacked versions of instances of and

, respectively.
We are interested in the case when are uniquely defined

and (2) defines a map , which takes a graph
as input and returns an output for each node. The Banach
fixed point theorem [53] provides a sufficient condition for the
existence and uniqueness of the solution of a system of equa-
tions. According to Banach’s theorem [53], (2) has a unique so-
lution provided that is a contraction map with respect to the
state, i.e., there exists , , such that

holds for any , where denotes
a vectorial norm. Thus, for the moment, let us assume that
is a contraction map. Later, we will show that, in GNNs, this
property is enforced by an appropriate implementation of the
transition function.

Note that (1) makes it possible to process both positional and
nonpositional graphs. For positional graphs, must receive the
positions of the neighbors as additional inputs. In practice, this
can be easily achieved provided that information contained in

, , and is sorted according to neighbors’ po-
sitions and is properly padded with special null values in po-
sitions corresponding to nonexisting neighbors. For example,

, where is the max-
imal number of neighbors of a node; holds, if is the
th neighbor of ; and , for some prede-

fined null state , if there is no th neighbor.
However, for nonpositional graphs, it is useful to replace

function of (1) with

(3)

where is a parametric function. This transition function,
which has been successfully used in recursive neural networks
[54], is not affected by the positions and the number of the chil-
dren. In the following, (3) is referred to as the nonpositional
form, while (1) is called the positional form. In order to imple-
ment the GNN model, the following items must be provided:

1) a method to solve (1);

GNN Learning
Gori et al IJCNN2005, TNN2009

Beyond GNN

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, DECEMBER 2018 2

works. To handle the complexity of graph data, new gen-
eralizations and definitions for important operations have
been rapidly developed over the past few years. For in-
stance, Figure 1 illustrates how a kind of graph convolution
is inspired by a standard 2D convolution. This survey aims
to provide a comprehensive overview of these methods, for
both interested researchers who want to enter this rapidly
developing field and experts who would like to compare
graph neural network algorithms.

A Brief History of Graph Neural Networks The nota-
tion of graph neural networks was firstly outlined in Gori
et al. (2005) [16], and further elaborated in Micheli (2009)
[17] and Scarselli et al. (2009) [18]. These early studies learn
a target node’s representation by propagating neighbor in-
formation via recurrent neural architectures in an iterative
manner until a stable fixed point is reached. This process
is computationally expensive, and recently there have been
increasing efforts to overcome these challenges [19], [20]. In
our survey, we generalize the term graph neural networks to
represent all deep learning approaches for graph data.

Inspired by the huge success of convolutional networks
in the computer vision domain, a large number of methods
that re-define the notation of convolution for graph data have
emerged recently. These approaches are under the umbrella
of graph convolutional networks (GCNs). The first promi-
nent research on GCNs is presented in Bruna et al. (2013),
which develops a variant of graph convolution based on
spectral graph theory [21]. Since that time, there have been
increasing improvements, extensions, and approximations
on spectral-based graph convolutional networks [12], [14],
[22], [23], [24]. As spectral methods usually handle the
whole graph simultaneously and are difficult to parallel
or scale to large graphs, spatial-based graph convolutional
networks have rapidly developed recently [25], [26], [27],
[28]. These methods directly perform the convolution in the
graph domain by aggregating the neighbor nodes’ informa-
tion. Together with sampling strategies, the computation can
be performed in a batch of nodes instead of the whole graph
[25], [28], which has the potential to improve efficiency.

In addition to graph convolutional networks, many alter-
native graph neural networks have been developed in the
past few years. These approaches include graph attention
networks, graph autoencoders, graph generative networks,
and graph spatial-temporal networks. Details on the catego-
rization of these methods are given in Section 3.

Related surveys on graph neural networks. There are
a limited number of existing reviews on the topic of graph
neural networks. Using the notation geometric deep learning,
Bronstein et al. [8] give an overview of deep learning
methods in the non-Euclidean domain, including graphs
and manifolds. While being the first review on graph con-
volution networks, this survey misses several important
spatial-based approaches, including [15], [20], [25], [27],
[28], [29], which update state-of-the-art benchmarks. Fur-
thermore, this survey does not cover many newly devel-
oped architectures which are equally important to graph
convolutional networks. These learning paradigms, includ-
ing graph attention networks, graph autoencoders, graph
generative networks, and graph spatial-temporal networks,
are comprehensively reviewed in this article. Battaglia et

(a) 2D Convolution. Analo-
gous to a graph, each pixel
in an image is taken as a
node where neighbors are de-
termined by the filter size.
The 2D convolution takes a
weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of
a node are ordered and have a
fixed size.

(b) Graph Convolution. To get
a hidden representation of the
red node, one simple solution
of graph convolution opera-
tion takes the average value
of node features of the red
node along with its neighbors.
Different from image data, the
neighbors of a node are un-
ordered and variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

al. [30] position graph networks as the building blocks for
learning from relational data, reviewing part of graph neu-
ral networks under a unified framework. However, their
generalized framework is highly abstract, losing insights on
each method from its original paper. Lee et al. [31] conduct
a partial survey on the graph attention model, which is
one type of graph neural network. Most recently, Zhang et
al. [32] present a most up-to-date survey on deep learning
for graphs, missing those studies on graph generative and
spatial-temporal networks. In summary, none of the existing
surveys provide a comprehensive overview of graph neural
networks, only covering some of the graph convolution
neural networks and examining a limited number of works,
thereby missing the most recent development of alternative
graph neural networks, such as graph generative networks
and graph spatial-temporal networks.

Graph neural networks vs. network embedding The
research on graph neural networks is closely related to
graph embedding or network embedding, another topic
which attracts increasing attention from both the data min-
ing and machine learning communities [33] [34] [35] [36],
[37], [38]. Network embedding aims to represent network
vertices into a low-dimensional vector space, by preserving
both network topology structure and node content informa-
tion, so that any subsequent graph analytics tasks such as
classification, clustering, and recommendation can be easily
performed by using simple off-the-shelf machine learning
algorithm (e.g., support vector machines for classification).
Many network embedding algorithms are typically unsu-
pervised algorithms and they can be broadly classified into
three groups [33], i.e., matrix factorization [39], [40], ran-
dom walks [41], and deep learning approaches. The deep
learning approaches for network embedding at the same
time belong to graph neural networks, which include graph
autoencoder-based algorithms (e.g., DNGR [42] and SDNE
[43]) and graph convolution neural networks with unsuper-
vised training(e.g., GraphSage [25]). Figure 2 describes the
differences between network embedding and graph neural

pictures from Z. Wu et al

JOURNAL OF LATEX CLASS FILES, VOL. X, NO. X, DECEMBER 2018 2

works. To handle the complexity of graph data, new gen-
eralizations and definitions for important operations have
been rapidly developed over the past few years. For in-
stance, Figure 1 illustrates how a kind of graph convolution
is inspired by a standard 2D convolution. This survey aims
to provide a comprehensive overview of these methods, for
both interested researchers who want to enter this rapidly
developing field and experts who would like to compare
graph neural network algorithms.

A Brief History of Graph Neural Networks The nota-
tion of graph neural networks was firstly outlined in Gori
et al. (2005) [16], and further elaborated in Micheli (2009)
[17] and Scarselli et al. (2009) [18]. These early studies learn
a target node’s representation by propagating neighbor in-
formation via recurrent neural architectures in an iterative
manner until a stable fixed point is reached. This process
is computationally expensive, and recently there have been
increasing efforts to overcome these challenges [19], [20]. In
our survey, we generalize the term graph neural networks to
represent all deep learning approaches for graph data.

Inspired by the huge success of convolutional networks
in the computer vision domain, a large number of methods
that re-define the notation of convolution for graph data have
emerged recently. These approaches are under the umbrella
of graph convolutional networks (GCNs). The first promi-
nent research on GCNs is presented in Bruna et al. (2013),
which develops a variant of graph convolution based on
spectral graph theory [21]. Since that time, there have been
increasing improvements, extensions, and approximations
on spectral-based graph convolutional networks [12], [14],
[22], [23], [24]. As spectral methods usually handle the
whole graph simultaneously and are difficult to parallel
or scale to large graphs, spatial-based graph convolutional
networks have rapidly developed recently [25], [26], [27],
[28]. These methods directly perform the convolution in the
graph domain by aggregating the neighbor nodes’ informa-
tion. Together with sampling strategies, the computation can
be performed in a batch of nodes instead of the whole graph
[25], [28], which has the potential to improve efficiency.

In addition to graph convolutional networks, many alter-
native graph neural networks have been developed in the
past few years. These approaches include graph attention
networks, graph autoencoders, graph generative networks,
and graph spatial-temporal networks. Details on the catego-
rization of these methods are given in Section 3.

Related surveys on graph neural networks. There are
a limited number of existing reviews on the topic of graph
neural networks. Using the notation geometric deep learning,
Bronstein et al. [8] give an overview of deep learning
methods in the non-Euclidean domain, including graphs
and manifolds. While being the first review on graph con-
volution networks, this survey misses several important
spatial-based approaches, including [15], [20], [25], [27],
[28], [29], which update state-of-the-art benchmarks. Fur-
thermore, this survey does not cover many newly devel-
oped architectures which are equally important to graph
convolutional networks. These learning paradigms, includ-
ing graph attention networks, graph autoencoders, graph
generative networks, and graph spatial-temporal networks,
are comprehensively reviewed in this article. Battaglia et

(a) 2D Convolution. Analo-
gous to a graph, each pixel
in an image is taken as a
node where neighbors are de-
termined by the filter size.
The 2D convolution takes a
weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of
a node are ordered and have a
fixed size.

(b) Graph Convolution. To get
a hidden representation of the
red node, one simple solution
of graph convolution opera-
tion takes the average value
of node features of the red
node along with its neighbors.
Different from image data, the
neighbors of a node are un-
ordered and variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

al. [30] position graph networks as the building blocks for
learning from relational data, reviewing part of graph neu-
ral networks under a unified framework. However, their
generalized framework is highly abstract, losing insights on
each method from its original paper. Lee et al. [31] conduct
a partial survey on the graph attention model, which is
one type of graph neural network. Most recently, Zhang et
al. [32] present a most up-to-date survey on deep learning
for graphs, missing those studies on graph generative and
spatial-temporal networks. In summary, none of the existing
surveys provide a comprehensive overview of graph neural
networks, only covering some of the graph convolution
neural networks and examining a limited number of works,
thereby missing the most recent development of alternative
graph neural networks, such as graph generative networks
and graph spatial-temporal networks.

Graph neural networks vs. network embedding The
research on graph neural networks is closely related to
graph embedding or network embedding, another topic
which attracts increasing attention from both the data min-
ing and machine learning communities [33] [34] [35] [36],
[37], [38]. Network embedding aims to represent network
vertices into a low-dimensional vector space, by preserving
both network topology structure and node content informa-
tion, so that any subsequent graph analytics tasks such as
classification, clustering, and recommendation can be easily
performed by using simple off-the-shelf machine learning
algorithm (e.g., support vector machines for classification).
Many network embedding algorithms are typically unsu-
pervised algorithms and they can be broadly classified into
three groups [33], i.e., matrix factorization [39], [40], ran-
dom walks [41], and deep learning approaches. The deep
learning approaches for network embedding at the same
time belong to graph neural networks, which include graph
autoencoder-based algorithms (e.g., DNGR [42] and SDNE
[43]) and graph convolution neural networks with unsuper-
vised training(e.g., GraphSage [25]). Figure 2 describes the
differences between network embedding and graph neural

Graph convolutional networks
Layers are not shared!

GbR 2019

Structured Deep Models Thomas Kipf

A brief history of graph neural nets

#10

Original GNN 
Gori et al.

(2005)

GG-NN  
Li et al.  

(ICLR 2016)

Spectral
Graph CNN  
Bruna et al.
(ICLR 2015)

ChebNet 
Defferrard et al.

(NIPS 2016)

GCN  
Kipf & Welling 
(ICLR 2017)

“Spectral methods”

(slide inspired by Alexander Gaunt’s talk on GNNs)

“Spatial methods”
GraphSAGE 
Hamilton et al.
(NIPS 2017)

MoNet 
Monti et al. 

(CVPR 2017)

Neural MP 
Gilmer et al. 
(ICML 2017)

A brief history of graph neural networks

Frasconi et al,

on DOAG (1998)

GbR 2019

THE FRAMEWORK OF
CONSTRAINED-BASED LEARNING

?
62 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 1. Some applications where the information is represented by graphs: (a) a chemical compound (adrenaline), (b) an image, and (c) a subset of the web.

phase. The idea is to encode the underlying graph structured
data using the topological relationships among the nodes of the
graph, in order to incorporate graph structured information in
the data processing step. Recursive neural networks [17], [19],
[20] and Markov chains [18], [21], [22] belong to this set of tech-
niques and are commonly applied both to graph and node-fo-
cused problems. The method presented in this paper extends
these two approaches in that it can deal directly with graph struc-
tured information.

Existing recursive neural networks are neural network models
whose input domain consists of directed acyclic graphs [17],
[19], [20]. The method estimates the parameters of a func-
tion , which maps a graph to a vector of reals. The approach
can also be used for node-focused applications, but in this case,
the graph must undergo a preprocessing phase [23]. Similarly,
using a preprocessing phase, it is possible to handle certain types
of cyclic graphs [24]. Recursive neural networks have been ap-
plied to several problems including logical term classification
[25], chemical compound classification [26], logo recognition
[2], [27], web page scoring [28], and face localization [29].

Recursive neural networks are also related to support vector
machines [30]–[32], which adopt special kernels to operate on
graph structured data. For example, the diffusion kernel [33] is
based on heat diffusion equation; the kernels proposed in [34]
and [35] exploit the vectors produced by a graph random walker
and those designed in [36]–[38] use a method of counting the
number of common substructures of two trees. In fact, recursive
neural networks, similar to support vector machine methods,
automatically encode the input graph into an internal represen-
tation. However, in recursive neural networks, the internal en-

coding is learned, while in support vector machine, it is designed
by the user.

On the other hand, Markov chain models can emulate
processes where the causal connections among events are
represented by graphs. Recently, random walk theory, which
addresses a particular class of Markov chain models, has been
applied with some success to the realization of web page
ranking algorithms [18], [21]. Internet search engines use
ranking algorithms to measure the relative “importance” of
web pages. Such measurements are generally exploited, along
with other page features, by “horizontal” search engines, e.g.,
Google [18], or by personalized search engines (“vertical”
search engines; see, e.g., [22]) to sort the universal resource
locators (URLs) returned on user queries.2 Some attempts have
been made to extend these models with learning capabilities
such that a parametric model representing the behavior of
the system can be estimated from a set of training examples
extracted from a collection [22], [40], [41]. Those models are
able to generalize the results to score all the web pages in the
collection. More generally, several other statistical methods
have been proposed, which assume that the data set consists of
patterns and relationships between patterns. Those techniques
include random fields [42], Bayesian networks [43], statistical
relational learning [44], transductive learning [45], and semisu-
pervised approaches for graph processing [46].

In this paper, we present a supervised neural network model,
which is suitable for both graph and node-focused applications.
This model unifies these two existing models into a common

2The relative importance measure of a web page is also used to serve other
goals, e.g., to improve the efficiency of crawlers [39].

GNN

�(f(x)) = 0

given task to be learned

Constraint-based learning

everything revolves around this compositional structure
Gnecco et al, Neural Computation 2015

external “rules”

GbR 2019

basis of the profile x 2 X of the individual (x, x). We assume that we are
given a finite collection of vector-based data X = {x

2 IR

d

, = 1, . . . , `} that
belong to either a or b. Supervised learning is defined by the training set, that
can be expressed in terms of the unary predicates a(xa

) and b(xb

). Interest-
ingly, as shown in the following example, we can interpret the neural network
architecture itself as a collection of constraints.

Example 4.1 Let us consider the XOR predicate that is characterized by

y((0, 1), (1, 0))

¬y((0, 0), (1, 1)).
(1)

Now we can express the neural architecture of Fig. ?? by the constraints

x3 � �(w31x1 + w32x2)� b3 = 0

x4 � �(w41x1 + w42x2)� b4 = 0

x5 � �(w53x3 + w54x4)� b5 = 0.

(2)

Notice that while the data constraints (1) are often softly enforced, the architecture
constraints (2) are better suited for hard satisfaction. Clearly, this distinction between
data and architectural constraints holds in general, while one might claim in this case
also the data constraints would better be hardly enforced.

As put forward in the following example, one might also be interested in
classifications that involve more categories that are not necessary disjoint.

Example 4.2 Classification of four rectangles intersecting

Description: Given the four rectangles represented in figure (3) we want to
classify the points of the domain in four classes. Since the rectangles are intersect
themselves, this is not a classic clustering problem. We have the following
ground truth:

A(x) = true , x 2 [�3, +1] ⇥ [�1, +1],

B(x) = true , x 2 [�1, +3] ⇥ [�1, +1],

C(x) = true , x 2 [�1, +1] ⇥ [�1, +3],

D(x) = true , x 2 [�1, +1] ⇥ [�3, +1].

(3)

Domain Representation: As domain we consider 900 points in a uniform grid
of the square [�3, 3] ⇥ [�3, 3], and we take 100 random points from them to
create the testing set. The remaining points form the training set S.

SUPERVISED LEARNING

In this case we want to classify the points of the square [�3, 3] ⇥ [�3, 3] using
only few supervisions.
Domain Representation: We take six supervisions for each class, three positive
and three negative from the training set S. Formally we define the following

16

248 CHAPTER 5 Deep Architectures

FIGURE 5.4

Network for the evaluation of the XOR.

Unlike in the case of ∧ and ∨, the set

L = {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 0)} =

is clearly not linearly separable. Formally, this comes out directly when considering
that for any candidate separation line, the following proposition must hold:

(b < 0) ∧ (w2 + b) > 0 ∧ (w1 + b) > 0 ∧ (w1 + w2 + b < 0).

Now it is easy to see that there is no solution. If we sum up the second and the third
inequalities, we get w1 +w2 +2b > 0. Likewise, if we sum up the first and the fourth
inequalities, we get w1 + w2 + 2b < 0, so we end up with a contradiction. Hence,
we conclude that W⊕ = ∅. A nice graphical interpretation of W⊕ = ∅ is given in
Exercise 4.

The above discussion essentially proves that we cannot compute the XOR function
using a single LTU. We will now show that instead there are many ways to represent
the XOR using a multilayered network (Fig. 5.4).

Looking at Fig. 5.4, we immediately realize that input x1 and x2 must be mapped
by the hidden layer to x3 and x4 such that it can be linearly separated by the neuron 5.
For example, in Fig. 5.5A it is shown how this can be done using a “geometrical”
approach; here the two evenly dashed lines have equations x1 + x2 + 1/2 = 0 and
x1+x2+3/2 = 0. Neurons 3 and 4 classify the points of the Boolean square according
to the rule x3 = [x1 + x2 − 1/2 ≥ 0] and x4 = [−x1 − x2 + 3/2 ≥ 0]; in this way,
as one can see from Fig. 5.5A, the inputs are mapped into a separable configuration.

Another way to implement the XOR function can be done by noting that both ¬x1∧
x2 and x1 ∧ ¬x2 can be represented by an LTU with the Heaviside function. This is
a straightforward consequence of the above discussed representations of ∧ and ∨ by
threshold functions. We can promptly see that a function for the realization of ⊕ can
be constructed by using the canonical representation x1⊕x2 = (¬x1∧x2)∨(x1∧¬x2).

Now let us begin with the construction of (¬x1 ∧ x2) and (x1 ∧ ¬x2). When
thinking of the ∧ and ∨ realization, we can promptly realize that the solution is
similar, since any min-term is linearly separable. In Fig. 5.5B we can see the lines
corresponding with the two min-terms and the mapping of each example onto the
hidden layer representation. The line corresponding to the neuron 3 has equation
−x1 + x2 − 1/2 = 0, while the one that corresponds to 4 has equation x1 − x2 −
1/2 = 0; in fact, we have ¬x1 ∧ x2 = [−x1 + x2 − 1/2 ≥ 0] and x1 ∧ ¬x2 =

248 CHAPTER 5 Deep Architectures

FIGURE 5.4

Network for the evaluation of the XOR.

Unlike in the case of ∧ and ∨, the set

L = {((0, 0), 0), ((0, 1), 1), ((1, 0), 1), ((1, 1), 0)} =

is clearly not linearly separable. Formally, this comes out directly when considering
that for any candidate separation line, the following proposition must hold:

(b < 0) ∧ (w2 + b) > 0 ∧ (w1 + b) > 0 ∧ (w1 + w2 + b < 0).

Now it is easy to see that there is no solution. If we sum up the second and the third
inequalities, we get w1 +w2 +2b > 0. Likewise, if we sum up the first and the fourth
inequalities, we get w1 + w2 + 2b < 0, so we end up with a contradiction. Hence,
we conclude that W⊕ = ∅. A nice graphical interpretation of W⊕ = ∅ is given in
Exercise 4.

The above discussion essentially proves that we cannot compute the XOR function
using a single LTU. We will now show that instead there are many ways to represent
the XOR using a multilayered network (Fig. 5.4).

Looking at Fig. 5.4, we immediately realize that input x1 and x2 must be mapped
by the hidden layer to x3 and x4 such that it can be linearly separated by the neuron 5.
For example, in Fig. 5.5A it is shown how this can be done using a “geometrical”
approach; here the two evenly dashed lines have equations x1 + x2 + 1/2 = 0 and
x1+x2+3/2 = 0. Neurons 3 and 4 classify the points of the Boolean square according
to the rule x3 = [x1 + x2 − 1/2 ≥ 0] and x4 = [−x1 − x2 + 3/2 ≥ 0]; in this way,
as one can see from Fig. 5.5A, the inputs are mapped into a separable configuration.

Another way to implement the XOR function can be done by noting that both ¬x1∧
x2 and x1 ∧ ¬x2 can be represented by an LTU with the Heaviside function. This is
a straightforward consequence of the above discussed representations of ∧ and ∨ by
threshold functions. We can promptly see that a function for the realization of ⊕ can
be constructed by using the canonical representation x1⊕x2 = (¬x1∧x2)∨(x1∧¬x2).

Now let us begin with the construction of (¬x1 ∧ x2) and (x1 ∧ ¬x2). When
thinking of the ∧ and ∨ realization, we can promptly realize that the solution is
similar, since any min-term is linearly separable. In Fig. 5.5B we can see the lines
corresponding with the two min-terms and the mapping of each example onto the
hidden layer representation. The line corresponding to the neuron 3 has equation
−x1 + x2 − 1/2 = 0, while the one that corresponds to 4 has equation x1 − x2 −
1/2 = 0; in fact, we have ¬x1 ∧ x2 = [−x1 + x2 − 1/2 ≥ 0] and x1 ∧ ¬x2 =

Supervised Learning

“hard” architectural constraints

Lagrangian fram
ew

ork

training set constraints

x5 � �(w53x3 + w54x4 + b4) = 0
x4 � �(w41x1 + w42x2 + b4) = 0
x3 � �(w31x1 + w32x2 + b3) = 0

 = 1, 2, 3, 4

x15 = 1, x25 = 1, x35 = 0, x45 = 0

1 2

34

architectural and environmental constraints

GbR 2019

Architectural constraints

minimize

subject to
i 2 H [O

E(w) =
X̀

=1

X

i2O

V (xi, yi)

 = 1, . . . , `

gi = xi � �

✓ X

j2pa(i)

wijxj

◆
= 0

L(�, w) =
X̀

=1

X

i2O

V (xi, yi) +
X

i2H[O

X̀

=1

�i

✓
xi � �

� X

j2pa(i)

wijxkj

�◆

hard constraint

Supervised learning, Lagrangian formulation

GbR 2019

“Saddle moves”: gradient descent/ascent

saddle points of the Lagrangian

gi = xi � �

✓ X

j2pa(i)

wijxj

◆
= 0

saddle points of the Lagrangian
Lagrangian multipliers, straw and support neurons!

A more biologically plausibile solution than Backpropagation

gradient descent
w

ij

 w

ij

� ⌘

w

@

wijL

x

i

 x

i

� ⌘

x

@

xiL

�

i

 �

i

� ⌘

�

@

�iL�i �i + ⌘�@�iL

Network growing and constraint selection …

gradient ascent

GbR 2019

LOCAL PROPAGATION
IN GRAPHIC NEURAL NETWORKS

?
62 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 1. Some applications where the information is represented by graphs: (a) a chemical compound (adrenaline), (b) an image, and (c) a subset of the web.

phase. The idea is to encode the underlying graph structured
data using the topological relationships among the nodes of the
graph, in order to incorporate graph structured information in
the data processing step. Recursive neural networks [17], [19],
[20] and Markov chains [18], [21], [22] belong to this set of tech-
niques and are commonly applied both to graph and node-fo-
cused problems. The method presented in this paper extends
these two approaches in that it can deal directly with graph struc-
tured information.

Existing recursive neural networks are neural network models
whose input domain consists of directed acyclic graphs [17],
[19], [20]. The method estimates the parameters of a func-
tion , which maps a graph to a vector of reals. The approach
can also be used for node-focused applications, but in this case,
the graph must undergo a preprocessing phase [23]. Similarly,
using a preprocessing phase, it is possible to handle certain types
of cyclic graphs [24]. Recursive neural networks have been ap-
plied to several problems including logical term classification
[25], chemical compound classification [26], logo recognition
[2], [27], web page scoring [28], and face localization [29].

Recursive neural networks are also related to support vector
machines [30]–[32], which adopt special kernels to operate on
graph structured data. For example, the diffusion kernel [33] is
based on heat diffusion equation; the kernels proposed in [34]
and [35] exploit the vectors produced by a graph random walker
and those designed in [36]–[38] use a method of counting the
number of common substructures of two trees. In fact, recursive
neural networks, similar to support vector machine methods,
automatically encode the input graph into an internal represen-
tation. However, in recursive neural networks, the internal en-

coding is learned, while in support vector machine, it is designed
by the user.

On the other hand, Markov chain models can emulate
processes where the causal connections among events are
represented by graphs. Recently, random walk theory, which
addresses a particular class of Markov chain models, has been
applied with some success to the realization of web page
ranking algorithms [18], [21]. Internet search engines use
ranking algorithms to measure the relative “importance” of
web pages. Such measurements are generally exploited, along
with other page features, by “horizontal” search engines, e.g.,
Google [18], or by personalized search engines (“vertical”
search engines; see, e.g., [22]) to sort the universal resource
locators (URLs) returned on user queries.2 Some attempts have
been made to extend these models with learning capabilities
such that a parametric model representing the behavior of
the system can be estimated from a set of training examples
extracted from a collection [22], [40], [41]. Those models are
able to generalize the results to score all the web pages in the
collection. More generally, several other statistical methods
have been proposed, which assume that the data set consists of
patterns and relationships between patterns. Those techniques
include random fields [42], Bayesian networks [43], statistical
relational learning [44], transductive learning [45], and semisu-
pervised approaches for graph processing [46].

In this paper, we present a supervised neural network model,
which is suitable for both graph and node-focused applications.
This model unifies these two existing models into a common

2The relative importance measure of a web page is also used to serve other
goals, e.g., to improve the efficiency of crawlers [39].

GNN

T is the number of iterations of the state transition function applied before computing the output.125

The recursive application of the state transition function fa() on the graph nodes yields a diffusion126

mechanism, whose range depends on T . In fact, by stacking t times the aggregation of 1-hop127

neighborhoods by fa(), information of one node can be transferred to the nodes that are distant at128

most t-hops. The number t may be seen as the depth of the GNN and thus each iteration can be129

considered a different layer of the GNN. A sufficient number of layers is key to achieve a useful130

encoding of the input graph for the task at hand and, hence, the choice is problem–specific.131

In the original GNN model [Scarselli et al., 2009], eq. (1) is executed until convergence of the132

state representation, i.e. until x(t)
v ' x

(t�1)
v , v 2 V . This scheme corresponds to the computation133

of the fixed point of the state transition function fa() on the input graph. In order to guarantee the134

convergence of this phase, the transition function is required to be a contraction map. Basically, the135

encoding phase, through the iteration of fa(), finds a solution to the fixed point problem defined by136

the constraint137

8v 2 V, xv = fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa). (3)

In this case, the states encode the information contained in the whole graph. This diffusion mechanism138

is more general than executing only a fixed number of iterations (i.e. stacking a fixed number of139

layers). However, it can be computationally heavy and, hence, many recent GNN architectures apply140

only a fixed number of iterations for all nodes.141

4 A constraint-based formulation of Graph Neural Networks142

Neural network learning can be cast as a Lagragian optimization problem by a formulation that143

requires the minimization of the classical data fitting loss (and eventually a regularization term)144

and the satisfaction of a set of architectural constraints that describe the computation performed on145

the data. Given this formulation, the solution can be computed by finding the saddle points of the146

associated Lagrangian in the space defined by the original network parameters and the Lagrange147

multipliers. The constraints can be exploited to enforce the computational structure that characterizes148

the GNN models.149

The computation of Graph Neural Networks is driven by the input graph topology that defines the150

constraints among the computed state variables xv, v 2 V . In particular, the fixed point computation151

aims at solving eq. (3), that imposes a constraint between the node states and the way they are152

computed by the state transition function. In the original GNN learning algorithm, the computation153

of the fixed point is required at each epoch of the learning procedure, as implemented by the iterative154

application of the transition function. Moreover, also the gradient computation requires to take into155

account the relaxation procedure, by a backpropagation schema through the replicas of the state156

transition network exploited during the iterations for the fixed point computation. This procedure157

may be time consuming when the number of iterations T for convergence to the fixed point is high158

(for instance in the case of large graphs).159

We consider a Lagrangian formulation of the problem by adding free variables corresponding to the160

node states xv , such that the fixed point is directly defined by the constraints themselves, as161

8v 2 V, G
�
xv � fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa)

�
= 0 (4)

where G(x) is a function characterized by G(0) = 0, such that the satisfaction of the constraints162

implies the solution of eq. (3). Apart from classical choices, like G(x) = x or G(x) = x

2, we can163

design different function shape (see Section 5.1), with desired properties. For instance, a possible164

implementations is G(x) = max(||x||1 � ✏, 0), where ✏ � 0 is a parameter that can be used to allow165

tolerance in the satisfaction of the constraint. The hard formulation of the problem requires ✏ = 0,166

but by setting ✏ to a small positive value it is possible to obtain a better generalization and tolerance167

to noise.168

In the following, for simplicity, we will refer to a node-focused task, such that for some (or all)169

nodes v 2 S ✓ V of the input graph G, a target output yv is provided as a supervision2. If170

2For the sake of simplicity we consider only the case when a single graph is provided for learning. The
extension for more graphs is straightforward for node-focused tasks, since they can be considered as a single
graph composed by the given graphs as disconnected components.

4

T is the number of iterations of the state transition function applied before computing the output.125

The recursive application of the state transition function fa() on the graph nodes yields a diffusion126

mechanism, whose range depends on T . In fact, by stacking t times the aggregation of 1-hop127

neighborhoods by fa(), information of one node can be transferred to the nodes that are distant at128

most t-hops. The number t may be seen as the depth of the GNN and thus each iteration can be129

considered a different layer of the GNN. A sufficient number of layers is key to achieve a useful130

encoding of the input graph for the task at hand and, hence, the choice is problem–specific.131

In the original GNN model [Scarselli et al., 2009], eq. (1) is executed until convergence of the132

state representation, i.e. until x(t)
v ' x

(t�1)
v , v 2 V . This scheme corresponds to the computation133

of the fixed point of the state transition function fa() on the input graph. In order to guarantee the134

convergence of this phase, the transition function is required to be a contraction map. Basically, the135

encoding phase, through the iteration of fa(), finds a solution to the fixed point problem defined by136

the constraint137

8v 2 V, xv = fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa). (3)

In this case, the states encode the information contained in the whole graph. This diffusion mechanism138

is more general than executing only a fixed number of iterations (i.e. stacking a fixed number of139

layers). However, it can be computationally heavy and, hence, many recent GNN architectures apply140

only a fixed number of iterations for all nodes.141

4 A constraint-based formulation of Graph Neural Networks142

Neural network learning can be cast as a Lagragian optimization problem by a formulation that143

requires the minimization of the classical data fitting loss (and eventually a regularization term)144

and the satisfaction of a set of architectural constraints that describe the computation performed on145

the data. Given this formulation, the solution can be computed by finding the saddle points of the146

associated Lagrangian in the space defined by the original network parameters and the Lagrange147

multipliers. The constraints can be exploited to enforce the computational structure that characterizes148

the GNN models.149

The computation of Graph Neural Networks is driven by the input graph topology that defines the150

constraints among the computed state variables xv, v 2 V . In particular, the fixed point computation151

aims at solving eq. (3), that imposes a constraint between the node states and the way they are152

computed by the state transition function. In the original GNN learning algorithm, the computation153

of the fixed point is required at each epoch of the learning procedure, as implemented by the iterative154

application of the transition function. Moreover, also the gradient computation requires to take into155

account the relaxation procedure, by a backpropagation schema through the replicas of the state156

transition network exploited during the iterations for the fixed point computation. This procedure157

may be time consuming when the number of iterations T for convergence to the fixed point is high158

(for instance in the case of large graphs).159

We consider a Lagrangian formulation of the problem by adding free variables corresponding to the160

node states xv , such that the fixed point is directly defined by the constraints themselves, as161

8v 2 V, G
�
xv � fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa)

�
= 0 (4)

where G(x) is a function characterized by G(0) = 0, such that the satisfaction of the constraints162

implies the solution of eq. (3). Apart from classical choices, like G(x) = x or G(x) = x

2, we can163

design different function shape (see Section 5.1), with desired properties. For instance, a possible164

implementations is G(x) = max(||x||1 � ✏, 0), where ✏ � 0 is a parameter that can be used to allow165

tolerance in the satisfaction of the constraint. The hard formulation of the problem requires ✏ = 0,166

but by setting ✏ to a small positive value it is possible to obtain a better generalization and tolerance167

to noise.168

In the following, for simplicity, we will refer to a node-focused task, such that for some (or all)169

nodes v 2 S ✓ V of the input graph G, a target output yv is provided as a supervision2. If170

2For the sake of simplicity we consider only the case when a single graph is provided for learning. The
extension for more graphs is straightforward for node-focused tasks, since they can be considered as a single
graph composed by the given graphs as disconnected components.

4

T is the number of iterations of the state transition function applied before computing the output.125

The recursive application of the state transition function fa() on the graph nodes yields a diffusion126

mechanism, whose range depends on T . In fact, by stacking t times the aggregation of 1-hop127

neighborhoods by fa(), information of one node can be transferred to the nodes that are distant at128

most t-hops. The number t may be seen as the depth of the GNN and thus each iteration can be129

considered a different layer of the GNN. A sufficient number of layers is key to achieve a useful130

encoding of the input graph for the task at hand and, hence, the choice is problem–specific.131

In the original GNN model [Scarselli et al., 2009], eq. (1) is executed until convergence of the132

state representation, i.e. until x(t)
v ' x

(t�1)
v , v 2 V . This scheme corresponds to the computation133

of the fixed point of the state transition function fa() on the input graph. In order to guarantee the134

convergence of this phase, the transition function is required to be a contraction map. Basically, the135

encoding phase, through the iteration of fa(), finds a solution to the fixed point problem defined by136

the constraint137

8v 2 V, xv = fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa). (3)

In this case, the states encode the information contained in the whole graph. This diffusion mechanism138

is more general than executing only a fixed number of iterations (i.e. stacking a fixed number of139

layers). However, it can be computationally heavy and, hence, many recent GNN architectures apply140

only a fixed number of iterations for all nodes.141

4 A constraint-based formulation of Graph Neural Networks142

Neural network learning can be cast as a Lagragian optimization problem by a formulation that143

requires the minimization of the classical data fitting loss (and eventually a regularization term)144

and the satisfaction of a set of architectural constraints that describe the computation performed on145

the data. Given this formulation, the solution can be computed by finding the saddle points of the146

associated Lagrangian in the space defined by the original network parameters and the Lagrange147

multipliers. The constraints can be exploited to enforce the computational structure that characterizes148

the GNN models.149

The computation of Graph Neural Networks is driven by the input graph topology that defines the150

constraints among the computed state variables xv, v 2 V . In particular, the fixed point computation151

aims at solving eq. (3), that imposes a constraint between the node states and the way they are152

computed by the state transition function. In the original GNN learning algorithm, the computation153

of the fixed point is required at each epoch of the learning procedure, as implemented by the iterative154

application of the transition function. Moreover, also the gradient computation requires to take into155

account the relaxation procedure, by a backpropagation schema through the replicas of the state156

transition network exploited during the iterations for the fixed point computation. This procedure157

may be time consuming when the number of iterations T for convergence to the fixed point is high158

(for instance in the case of large graphs).159

We consider a Lagrangian formulation of the problem by adding free variables corresponding to the160

node states xv , such that the fixed point is directly defined by the constraints themselves, as161

8v 2 V, G
�
xv � fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa)

�
= 0 (4)

where G(x) is a function characterized by G(0) = 0, such that the satisfaction of the constraints162

implies the solution of eq. (3). Apart from classical choices, like G(x) = x or G(x) = x

2, we can163

design different function shape (see Section 5.1), with desired properties. For instance, a possible164

implementations is G(x) = max(||x||1 � ✏, 0), where ✏ � 0 is a parameter that can be used to allow165

tolerance in the satisfaction of the constraint. The hard formulation of the problem requires ✏ = 0,166

but by setting ✏ to a small positive value it is possible to obtain a better generalization and tolerance167

to noise.168

In the following, for simplicity, we will refer to a node-focused task, such that for some (or all)169

nodes v 2 S ✓ V of the input graph G, a target output yv is provided as a supervision2. If170

2For the sake of simplicity we consider only the case when a single graph is provided for learning. The
extension for more graphs is straightforward for node-focused tasks, since they can be considered as a single
graph composed by the given graphs as disconnected components.

4

L(fr(xv|✓frr), yv) is the loss function used to measure the target fitting approximation for node171

v 2 S, the formulation of the learning task is172

min

✓fa ,✓fr ,X

X

v2S

L(fr(xv|✓fr), yv)

subject to G
�
xv � fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa)

�
= 0, 8 v 2 V (5)

where ✓fa and ✓fr are the weights of the MLPs implementing the state transition function and the173

output function, respectively, and X = {xv : v 2 V } is the set of the introduced free state variables.174

This problem statement implicitly includes the definition of the fixed point of the state transition175

function in the optimal solution, since for any solution the constraints are satisfied and hence the176

computed optimal xv are solutions of eq. (3). As shown in the previous subsection, the constrained177

optimization problem of eq. (5) can be solved in the Lagrangian framework by introducing for each178

constraint a Lagrange multiplier �v , to define the Lagrangian function L(✓fa , ✓fr , X,⇤) as:179

L(✓fa , ✓fr , X,⇤) =

X

v2S

[L(fr(xv|✓fr), yv)+

+�vG
�
xv � fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa)

�⇤
, (6)

where ⇤ is the set of the |V | Lagrangian multipliers. Finally, we can define the unconstrained180

optimization problem as the search for saddle points in the adjoint space (✓fa , ✓fr , X,⇤) as:181

min

✓fa ,✓fr ,X
max

⇤
L(✓fa , ✓fr , X,⇤)

that can be solved by gradient descent with respect to the variables ✓fa , ✓fr , X and gradient ascent182

with respect to the Lagrange multipliers ⇤. The gradient can be computed locally to each node, given183

the local variables and those of the neighbor nodes. In fact, the derivatives of the Lagrangian 3 with184

respect to the considered parameters are:185

@L
@xv

= L

0
f

0
r,v + �vG0

v(1� f

0
a,v)�

X

w:v2ne[w]

�wG0
wf

0
a,w (7)

@L
@✓fa

= �
X

v2S

�vG0
vf

0
a,v (8)

@L
@✓fr

=

X

v2S

L

0
f

0
r,v (9)

@L
@�v

= Gv (10)

where, for compactness, fa,v = fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa), f 0
a,v is its first deriva-186

tive4, fr,v = fr(xv|✓fr), f 0
r,v is its first derivative, Gv = G

⇣
xv � f

(v)
a

⌘
and G0

v is its first derivative,187

and, finally, L0 is the first derivative of L. Being fa and fr implemented by feedforward neural188

networks, their derivatives are obtained by applying a backpropagation scheme.189

Even if the proposed formulation adds the free state variables xv and the Lagrange multipliers �v,190

v 2 V , there is no significant increase in the memory requirements since the state variables are also191

required in the original formulation and there is just a Lagrange multiplier for each node.192

The diffusion mechanism of the state computation is enforced by means of the constraints. The193

learning algorithm is based on a mixed strategy where (i) Backpropagation is used to efficiently194

update the weights of the neural networks that implement the state transition and output functions, and,195

(ii) the diffusion mechanism evolves gradually by enforcing the convergence of the state transition196

function to a fixed point by means of the constraints. This last point is a novel approach in training197

Graph Neural Networks. In fact, in classical approaches, the encoding phase (see Section 3) is198

3When parameters are vectors, the reported gradients should be considered element-wise.
4The derivative is computed with respect to the same argument as in the partial derivative on the left side.

5

Constrained-based expression
of data structures

supervised nodes

✏�✏

transition function

output function

L(fr(xv|✓frr), yv) is the loss function used to measure the target fitting approximation for node171

v 2 S, the formulation of the learning task is172

min

✓fa ,✓fr ,X

X

v2S

L(fr(xv|✓fr), yv)

subject to G
�
xv � fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa)

�
= 0, 8 v 2 V (5)

where ✓fa and ✓fr are the weights of the MLPs implementing the state transition function and the173

output function, respectively, and X = {xv : v 2 V } is the set of the introduced free state variables.174

This problem statement implicitly includes the definition of the fixed point of the state transition175

function in the optimal solution, since for any solution the constraints are satisfied and hence the176

computed optimal xv are solutions of eq. (3). As shown in the previous subsection, the constrained177

optimization problem of eq. (5) can be solved in the Lagrangian framework by introducing for each178

constraint a Lagrange multiplier �v , to define the Lagrangian function L(✓fa , ✓fr , X,⇤) as:179

L(✓fa , ✓fr , X,⇤) =

X

v2S

[L(fr(xv|✓fr), yv)+

+�vG
�
xv � fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa)

�⇤
, (6)

where ⇤ is the set of the |V | Lagrangian multipliers. Finally, we can define the unconstrained180

optimization problem as the search for saddle points in the adjoint space (✓fa , ✓fr , X,⇤) as:181

min

✓fa ,✓fr ,X
max

⇤
L(✓fa , ✓fr , X,⇤)

that can be solved by gradient descent with respect to the variables ✓fa , ✓fr , X and gradient ascent182

with respect to the Lagrange multipliers ⇤. The gradient can be computed locally to each node, given183

the local variables and those of the neighbor nodes. In fact, the derivatives of the Lagrangian 3 with184

respect to the considered parameters are:185

@L
@xv

= L

0
f

0
r,v + �vG0

v(1� f

0
a,v)�

X

w:v2ne[w]

�wG0
wf

0
a,w (7)

@L
@✓fa

= �
X

v2S

�vG0
vf

0
a,v (8)

@L
@✓fr

=

X

v2S

L

0
f

0
r,v (9)

@L
@�v

= Gv (10)

where, for compactness, fa,v = fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa), f 0
a,v is its first deriva-186

tive4, fr,v = fr(xv|✓fr), f 0
r,v is its first derivative, Gv = G

⇣
xv � f

(v)
a

⌘
and G0

v is its first derivative,187

and, finally, L0 is the first derivative of L. Being fa and fr implemented by feedforward neural188

networks, their derivatives are obtained by applying a backpropagation scheme.189

Even if the proposed formulation adds the free state variables xv and the Lagrange multipliers �v,190

v 2 V , there is no significant increase in the memory requirements since the state variables are also191

required in the original formulation and there is just a Lagrange multiplier for each node.192

The diffusion mechanism of the state computation is enforced by means of the constraints. The193

learning algorithm is based on a mixed strategy where (i) Backpropagation is used to efficiently194

update the weights of the neural networks that implement the state transition and output functions, and,195

(ii) the diffusion mechanism evolves gradually by enforcing the convergence of the state transition196

function to a fixed point by means of the constraints. This last point is a novel approach in training197

Graph Neural Networks. In fact, in classical approaches, the encoding phase (see Section 3) is198

3When parameters are vectors, the reported gradients should be considered element-wise.
4The derivative is computed with respect to the same argument as in the partial derivative on the left side.

5

L(fr(xv|✓frr), yv) is the loss function used to measure the target fitting approximation for node171

v 2 S, the formulation of the learning task is172

min

✓fa ,✓fr ,X

X

v2S

L(fr(xv|✓fr), yv)

subject to G
�
xv � fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa)

�
= 0, 8 v 2 V (5)

where ✓fa and ✓fr are the weights of the MLPs implementing the state transition function and the173

output function, respectively, and X = {xv : v 2 V } is the set of the introduced free state variables.174

This problem statement implicitly includes the definition of the fixed point of the state transition175

function in the optimal solution, since for any solution the constraints are satisfied and hence the176

computed optimal xv are solutions of eq. (3). As shown in the previous subsection, the constrained177

optimization problem of eq. (5) can be solved in the Lagrangian framework by introducing for each178

constraint a Lagrange multiplier �v , to define the Lagrangian function L(✓fa , ✓fr , X,⇤) as:179

L(✓fa , ✓fr , X,⇤) =

X

v2S

[L(fr(xv|✓fr), yv)+

+�vG
�
xv � fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa)

�⇤
, (6)

where ⇤ is the set of the |V | Lagrangian multipliers. Finally, we can define the unconstrained180

optimization problem as the search for saddle points in the adjoint space (✓fa , ✓fr , X,⇤) as:181

min

✓fa ,✓fr ,X
max

⇤
L(✓fa , ✓fr , X,⇤)

that can be solved by gradient descent with respect to the variables ✓fa , ✓fr , X and gradient ascent182

with respect to the Lagrange multipliers ⇤. The gradient can be computed locally to each node, given183

the local variables and those of the neighbor nodes. In fact, the derivatives of the Lagrangian 3 with184

respect to the considered parameters are:185

@L
@xv

= L

0
f

0
r,v + �vG0

v(1� f

0
a,v)�

X

w:v2ne[w]

�wG0
wf

0
a,w (7)

@L
@✓fa

= �
X

v2S

�vG0
vf

0
a,v (8)

@L
@✓fr

=

X

v2S

L

0
f

0
r,v (9)

@L
@�v

= Gv (10)

where, for compactness, fa,v = fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa), f 0
a,v is its first deriva-186

tive4, fr,v = fr(xv|✓fr), f 0
r,v is its first derivative, Gv = G

⇣
xv � f

(v)
a

⌘
and G0

v is its first derivative,187

and, finally, L0 is the first derivative of L. Being fa and fr implemented by feedforward neural188

networks, their derivatives are obtained by applying a backpropagation scheme.189

Even if the proposed formulation adds the free state variables xv and the Lagrange multipliers �v,190

v 2 V , there is no significant increase in the memory requirements since the state variables are also191

required in the original formulation and there is just a Lagrange multiplier for each node.192

The diffusion mechanism of the state computation is enforced by means of the constraints. The193

learning algorithm is based on a mixed strategy where (i) Backpropagation is used to efficiently194

update the weights of the neural networks that implement the state transition and output functions, and,195

(ii) the diffusion mechanism evolves gradually by enforcing the convergence of the state transition196

function to a fixed point by means of the constraints. This last point is a novel approach in training197

Graph Neural Networks. In fact, in classical approaches, the encoding phase (see Section 3) is198

3When parameters are vectors, the reported gradients should be considered element-wise.
4The derivative is computed with respect to the same argument as in the partial derivative on the left side.

5

L(fr(xv|✓frr), yv) is the loss function used to measure the target fitting approximation for node171

v 2 S, the formulation of the learning task is172

min

✓fa ,✓fr ,X

X

v2S

L(fr(xv|✓fr), yv)

subject to G
�
xv � fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa)

�
= 0, 8 v 2 V (5)

where ✓fa and ✓fr are the weights of the MLPs implementing the state transition function and the173

output function, respectively, and X = {xv : v 2 V } is the set of the introduced free state variables.174

This problem statement implicitly includes the definition of the fixed point of the state transition175

function in the optimal solution, since for any solution the constraints are satisfied and hence the176

computed optimal xv are solutions of eq. (3). As shown in the previous subsection, the constrained177

optimization problem of eq. (5) can be solved in the Lagrangian framework by introducing for each178

constraint a Lagrange multiplier �v , to define the Lagrangian function L(✓fa , ✓fr , X,⇤) as:179

L(✓fa , ✓fr , X,⇤) =

X

v2S

[L(fr(xv|✓fr), yv)+

+�vG
�
xv � fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa)

�⇤
, (6)

where ⇤ is the set of the |V | Lagrangian multipliers. Finally, we can define the unconstrained180

optimization problem as the search for saddle points in the adjoint space (✓fa , ✓fr , X,⇤) as:181

min

✓fa ,✓fr ,X
max

⇤
L(✓fa , ✓fr , X,⇤)

that can be solved by gradient descent with respect to the variables ✓fa , ✓fr , X and gradient ascent182

with respect to the Lagrange multipliers ⇤. The gradient can be computed locally to each node, given183

the local variables and those of the neighbor nodes. In fact, the derivatives of the Lagrangian 3 with184

respect to the considered parameters are:185

@L
@xv

= L

0
f

0
r,v + �vG0

v(1� f

0
a,v)�

X

w:v2ne[w]

�wG0
wf

0
a,w (7)

@L
@✓fa

= �
X

v2S

�vG0
vf

0
a,v (8)

@L
@✓fr

=

X

v2S

L

0
f

0
r,v (9)

@L
@�v

= Gv (10)

where, for compactness, fa,v = fa(xne[v], lne[v], l(v,ch[v]), l(pa[v],v), xv, lv|✓fa), f 0
a,v is its first deriva-186

tive4, fr,v = fr(xv|✓fr), f 0
r,v is its first derivative, Gv = G

⇣
xv � f

(v)
a

⌘
and G0

v is its first derivative,187

and, finally, L0 is the first derivative of L. Being fa and fr implemented by feedforward neural188

networks, their derivatives are obtained by applying a backpropagation scheme.189

Even if the proposed formulation adds the free state variables xv and the Lagrange multipliers �v,190

v 2 V , there is no significant increase in the memory requirements since the state variables are also191

required in the original formulation and there is just a Lagrange multiplier for each node.192

The diffusion mechanism of the state computation is enforced by means of the constraints. The193

learning algorithm is based on a mixed strategy where (i) Backpropagation is used to efficiently194

update the weights of the neural networks that implement the state transition and output functions, and,195

(ii) the diffusion mechanism evolves gradually by enforcing the convergence of the state transition196

function to a fixed point by means of the constraints. This last point is a novel approach in training197

Graph Neural Networks. In fact, in classical approaches, the encoding phase (see Section 3) is198

3When parameters are vectors, the reported gradients should be considered element-wise.
4The derivative is computed with respect to the same argument as in the partial derivative on the left side.

5

Constrained-based expression of data structures (con’t)

gradient descent

gradient ascent

advantages from insensitiveness

better suited for generalization

Backpropagation: a global computation scheme

! GNNs still rely on extensions
of Backpropagation

! In Backpropagation, the
gradient of the cost function
with respect to a certain
weight in layer l is computed
only after a forward and a
backward steps that involve
all the neural units of all
layers

Local Propagation (LP): a local computation scheme

! In Local Propagation, the
gradient of the cost function
with respect to a certain
weight in layer ℓ is computed
only with respect to the x and
λ of the neighboring layers
(i.e. ℓ− 1 and ℓ+ 1).

Backpropagation vs Local Propagation

a

c

d

f

g

c
c

f

f

g

g

d

b
a

a

1

2

3

4

56

64 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 1, JANUARY 2009

Fig. 2. Graph and the neighborhood of a node. The state of the node 1
depends on the information contained in its neighborhood.

to each node that is based on the information con-
tained in the neighborhood of (see Fig. 2). The state con-
tains a representation of the concept denoted by and can be
used to produce an output , i.e., a decision about the concept.

Let be a parametric function, called local transition func-
tion, that expresses the dependence of a node on its neighbor-
hood and let be the local output function that describes how
the output is produced. Then, and are defined as follows:

(1)

where , , , and are the label of , the labels
of its edges, the states, and the labels of the nodes in the neigh-
borhood of , respectively.

Remark 1: Different notions of neighborhood can be adopted.
For example, one may wish to remove the labels , since
they include information that is implicitly contained in .
Moreover, the neighborhood could contain nodes that are two
or more links away from . In general, (1) could be simplified
in several different ways and several minimal models4 exist. In
the following, the discussion will mainly be based on the form
defined by (1), which is not minimal, but it is the one that more
closely represents our intuitive notion of neighborhood.

Remark 2: Equation (1) is customized for undirected graphs.
When dealing with directed graphs, the function can also ac-
cept as input a representation of the direction of the arcs. For ex-
ample, may take as input a variable for each arc
such that , if is directed towards and , if
comes from . In the following, in order to keep the notations
compact, we maintain the customization of (1). However, un-
less explicitly stated, all the results proposed in this paper hold

4A model is said to be minimal if it has the smallest number of variables while
retaining the same computational power.

also for directed graphs and for graphs with mixed directed and
undirected links.

Remark 3: In general, the transition and the output functions
and their parameters may depend on the node . In fact, it is
plausible that different mechanisms (implementations) are used
to represent different kinds of objects. In this case, each kind of
nodes has its own transition function , output function

, and a set of parameters . Thus, (1) becomes
and .

However, for the sake of simplicity, our analysis will consider
(1) that describes a particular model where all the nodes share
the same implementation.

Let , , , and be the vectors constructed by stacking all
the states, all the outputs, all the labels, and all the node labels,
respectively. Then, (1) can be rewritten in a compact form as

(2)

where , the global transition function and , the global
output function are stacked versions of instances of and

, respectively.
We are interested in the case when are uniquely defined

and (2) defines a map , which takes a graph
as input and returns an output for each node. The Banach
fixed point theorem [53] provides a sufficient condition for the
existence and uniqueness of the solution of a system of equa-
tions. According to Banach’s theorem [53], (2) has a unique so-
lution provided that is a contraction map with respect to the
state, i.e., there exists , , such that

holds for any , where denotes
a vectorial norm. Thus, for the moment, let us assume that
is a contraction map. Later, we will show that, in GNNs, this
property is enforced by an appropriate implementation of the
transition function.

Note that (1) makes it possible to process both positional and
nonpositional graphs. For positional graphs, must receive the
positions of the neighbors as additional inputs. In practice, this
can be easily achieved provided that information contained in

, , and is sorted according to neighbors’ po-
sitions and is properly padded with special null values in po-
sitions corresponding to nonexisting neighbors. For example,

, where is the max-
imal number of neighbors of a node; holds, if is the
th neighbor of ; and , for some prede-

fined null state , if there is no th neighbor.
However, for nonpositional graphs, it is useful to replace

function of (1) with

(3)

where is a parametric function. This transition function,
which has been successfully used in recursive neural networks
[54], is not affected by the positions and the number of the chil-
dren. In the following, (3) is referred to as the nonpositional
form, while (1) is called the positional form. In order to imple-
ment the GNN model, the following items must be provided:

1) a method to solve (1);

constraints on supervision

constraints on state propagation

constraints on state propagation

sem
i-supervised learning

When new graphs come …

you can always enforce state propagation

Evolutions: MultiLayer Lagrangian GNNs
! Even though the state transition function can be implemented by

Deep Neural Networks, the GNN is still shallow.
! A multilayer version of our algorithm can be easily introduced by

simply adding the corresponding constraints
! Label of hidden nodes are simply the states of the nodes of the layer

below.
! The new constraints add new variables (e.g. yi , zi , etc.)

(a) A shallow GNN. (b) A deep GNN.

Deep GNN

original GNN model

Deep GNN model

• GNN as diffusion machines and its evolution

• Constrained-based learning

• Saddle move algorithms and local computation

• The natural links with logic

• Learning of constraints and explanation

Conclusions

A
 unified fram

ew
ork for learning and reasoning

Special Issue on
Non-Euclidean Deep Learning

Paper submission due: 15 July 2019
First Notification: 1 November 2019

Revision: 1 January 2020
Final Decision: 1 March 2020

Publication date: June 2020 (tentative)

Guest Editors

Michael Bronstein*, Imperial College London (UK), michael.bronstein@imperial.ac.uk  
Joan Bruna, New York University (USA), bruna@cims.nyu.edu  
Taco Cohen, Qualcomm AI Research (Netherlands), tacos@qti.qualcomm.com  
Marco Gori, University of Siena (Italy), marco@diism.unisi.it  
Pietro Lio’, University of Cambridge (UK), pl219@cam.ac.uk  
Jure Leskovec, Stanford University (USA), jure@cs.stanford.edu  
Le Song, Georgia Institute of Technology (USA), lsong@cc.gatech.edu 
Oriol Vinyals, DeepMind (UK), vinyals@google.com  
Stefanos Zafeiriou*, Imperial College London (UK), s.zafeiriou@imperial.ac.uk

mailto:s.zafeiriou@imperial.ac.uk

• https://sailab.diism.unisi.it/gnn/

• https://github.com/GiuseppeMarra/CLAREecml

Surveys

• P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner et al., “Relational inductive biases, deep
learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.

• Graph Neural Networks: A Review of Methods and Applications. Jie Zhou, Ganqu
Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun. 2018

• Geometric Deep Learning: Going beyond Euclidean data. Bronstein, Michael M and
Bruna, Joan and LeCun, Yann and Szlam, Arthur and Vandergheynst, Pierre. IEEE SPM
2017

Software resources at SAILAB

https://sailab.diism.unisi.it/gnn/

Machine Learning

Marco Gori

A CONSTRAINT-BASED APPROACH

Machine Learning 
A Constraint-Based Approach
Marco Gori Department of Information Engineering and Mathematics, University

of Siena, Italy

A focused approach that covers the deep ideas of machine learning through a
variety of specific techniques

KEY FEATURES
• It is an introductory book for all readers who love in-depth explanations of

fundamental concepts.

• It is intended to stimulate questions and help a gradual conquering of basic

methods, more than offering “recipes for cooking.”

• It proposes the adoption of the notion of constraint as a truly unified

treatment of nowadays most common machine learning approaches, while

combining the strength of logic formalisms dominating in the AI community.

• It contains a lot of exercises along with the answers, according to a slight

modification of Donald Knuth’s difficulty ranking.

• It comes with a companion Web site to assist more on practical issues.  

QUOTES
A fairly comprehensive and original book on machine learning, including deep

learning, written from a constraint-based perspective where Marco Gori shares

his passion for the topic with his reader. The book comes also with a set of

useful problems, exercises, solutions, as well as a companion web site.

Pierre Baldi, University of California Irvine

This very interesting book brings a fresh look at machine learning and deep

learning from the broad point of view in which learning corresponds to satisfying

constraints, encompassing the perceptual as well as the symbolic, soft as well as

hard constraints.

Yoshua Bengio, Université de Montréal

A real tour-de-force across the landscape of a field -- machine learning -- which

is developing very rapidly and is transforming a large swath of today's science

and engineering of intelligence.

Tomaso Poggio, MIT

ISBN: 978-0-08-100659-7

PUB DATE: November 2017

LIST PRICE: £59.99/€70.95/$99.95

FORMAT: Paperback

PAGES: c. 580

AUDIENCE  
Upper level undergraduate and

graduate students taking a

machine learning course in

computer science departments and

professionals involved in relevant

areas of artificial intelligence

COMPUTING
Please contact your Elsevier Sales or Customer Service Representative

