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GRAPHICAL DOMAINS
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Program behavior

program name (list);

On the truth of logic statements ™

begin

if 71 then
o(v(a, B),n(7),90) o, n(7), ¥(v, o, 8))) a

else
b’.

¢

while 72 do
begin
d:
if 73 then
while 74 do

e

end;

f




Structured patterns ...

e

Pattern recognition community: enormous tradition
(e.g. syntactic pattern recognition, Horst Bunke, ...)



Yet another one ...

a=(square,0.843)

e b
f c=(triangle 18)
g=(letter(S).0.
d=(triangle/ 0.018)
d c h=(letter(U).0.087)

e=(triangle, 0.018) i=(letter(M).0.011)

§ [o]

h 1

Another example: XY-trees for Document Analysis and Recognition



Social nets

here we need to make prediction at node level!



Formulation of Learning Tasks

T(G,n) 7(GQ)

node focussed graphs as single patterns:
computation classification, regression



GRAPH NEURAL NETS

METHODS AND HISTORICAL ISSUES
Where do they come from?

£ M @

: GNN

“diffusion” machines ...

GbR 2019



Node-based encoding

Pl

Z
(embedding)

encode node

we could choose an “appropriate window”



Information diffusion and causality

A transduction T (-) is causal if Vv € vert(U ) T (U ), only depends on the
subgraph of U induced by {v} U de[v].

NN
QLI
.

U eu* T(U) e Y#



Directed Ordered Acyclic Graphs

The class of DOAGs is formed by directed acyclic graphs such that, for each vertex

v, a total order < is defined on the edges leaving from v.

Eg: (v,w) < (v,u) < (v,t)

V
1st 2nd \3rd
Y
U t
2nd
1st 1st 1st 2nd
\ \



State-based representation

Given an input graph U, for each vertex v:
Xy = f(XCh[v]7 Uv)
Y, = 9(X,,Uy)
where ch|v| are the (ordered) children of v and
f: X" xU — X state transition function

g: X xU—)Y output function

Compare to temporal dynamical systems:

Xt — f(Xt—laUt)
Y, = Q(Xt, Ut)

a recursive state representation exists only if 7 () is causal

T (-) is stationary: f(-) and g(+) do not depend on v

419338l S=0p 93]S uaJdp|iyo }Jo 8U!JSPJO



Reduction to sequences

Xi=f(X¢—1,Uy)
e————

NB: fort = 0, X = X is the initial state

The initial state is associated with the external vertex (frontier)




The case of binary trees ...

frontier state if v.R is external

|

Xy = f(U’Ua X’U.L7 X’U.R)

|

frontier state if v.L is external




Generalized shift-operator

e Sequences: ¢~ 'Y ; = Y ,_; (unitary time delay).

e DOAGsS: qk_le is the label attached to the k-th child of vertex v.
NB: qk_le — () if the k-th child of v belongs to the frontier.

e Composition is not commutative:
v

1st 2nd ~\3rd

nd nd

1st 1st
@': )\\ @ @

45 a7 'Y, a1 "5 'Y,

2nd

- 2 = N
\

1st
\ /@



Encoding networks

Given a graph U € U7 and a recursive transduction 7.

The encoding network associated to U and T is formed by unrolling the

recursive network of 7 through the input graph U .

Special case (time-unfolding): #¢ is the class of sequences:

Ui U Us Uy
(O ()= ()= Q<—Q
~ / /
S - T~ ~ . v/ ’ // / // .
.. . X9 7 | K | Recursive state
RN )IE / " update scheme
/
~ - \\\\ - 3 // Il
~o / :
~ - / |
R y
N, 1
Yy
‘ Y q Y o Y 3 Y4
frontier state ‘ ‘ ‘

;

U¢

Recursive network

o ldd ]
EXEX

Encoding network




Encoding nets for binary trees

Recursive network

Lo

Encoding network

.

frontier states



Data structures + recursive nets = encoding nets

Sequence (list)

@ ¢ @ @

Data structure (binary tree)

+
@"

Y :

AXt

U ¢

Recursive network

Recursive network

EEE
0000
® © ©

Encoding network: TIME UNFOLDING

a

O_//-V

%%' by

frontier states

Encoding network

.
!
O
T
O



Using neural nets
for sequences ...

The state transition function is implemented by a MLP:




Time unfolding
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The encoding net has a feedforward
structure: Gradient can be computed
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Using neural nets
for binary trees ...

State labels are real vectors: X , € IR".

The state transition function is implemented by a MLP (e.g. case of binary trees)

X’U — f(XCh[U]aU”U) — f(QZ_lx’anr_lX’UaU’U)
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Structure (graph) unfolding

From the encoding network to the encoding neural network ...



Backpropagation through structure

Algorithm 1 BPTS

Input:
The graph U:;
A recursive neural network IN.

Output:
The gradient Ve /i (O).

begin
Initialize(O);
Encoding-Neural-Network(U,N);
Backpropagation(IN);

Average(0). « Weight sharing ...

end



Non-stationary transductions

Linguistic specification of the recursive network

Sequence of vertices Seq;
Vertex v;

Seq <- sort vertices by( dist from(frontier), <);
foreach(v, Seq) {

if (dist from(frontier)<3) then (

Y
q—l ® q—l
if (U in [0.3,0.55] ) then 3@&31 ;

Y
®
q
else é@l
X

else |4, égql ;
X




Compiling ...

The input tree is mapped to one with different structure!

From the previous linguistic specification the encoding network is compiled. Finally,

In the last step the encoding neural network is created.

Input Tree 0.2 Q/'.

. Lo, .
7 4 :
0.5 0.43 6/' 0.43 Q/". frontier states
0.37 0.4 0.11 0(1)1/’

) P o )
1 2 3 037 0.4
frontier states

frontier states

Encoding Network



What if DOAG assumption is lost?

It’s the general case which originated the term GNN!

When ordering is lost, the previous data flow
computational scheme cannot be established:
We need a different diffusion process!



Neighbor-based computation

0
e
c.
=
3,
5 1= f U1 1a2)5 13,0y - La gy Le) - %2 %3, %4, %6, b 13, 1y I )
D S R —
8 [ cofl] X nell] ! nefn]
- . . .
) node label connection label neigshbor state neigchbor label
0a g g
= | | /M
o —_ —
ct, In = fw(lnalco[n]7xne[n]7lne[n]) z w(T,1)
% 0 = Gy(x,ly)

O, = gw(xna ln)



Non-positional graphs
In many cases ...

diffusion-based computation similar to PageRank

L

l

r, = Z hw(lnyl(n,u)axualu>a neN

wEneln] * permutation-independent




Graph compiling .
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GNN Learning

Gori et al JCNN2005,TNN2009

z(t+1) = Fy(x(t),l)

a) The states x,, (t) are iteratively updated by T until at time
T they approach the fixed point solutionof  &(7T) ~ .

b) The gradient de,,(T)/O0w is computed.

c) The weights w are updated according to the gradient com
puted 1n step b).

Ty = fw(l’na lco[n] s Lne[n]s lne[n])



Beyond GNN

Graph convolutional networks

Layers are not shared!

pictures from Z.Wu et al



A brief history of graph neural networks

“Spatial methods”
P Mo.Net GraphSAGE
Monti et al. Hamilton et al
(CVPR 2017) '
Original GNN GG-NN (NIPS 2017)
= Gorietal. = Li et al. -
Neural MP
(2005) (ICLR 2016) Gilmer et al.
(ICML 2017)
Frasconi et al, GCN
Kipf & Welling
on DOAG (1998) (ICLR 2017)
!
Spectral ChebNet
(?Braph CENIN — Defferrard etal. | “Spectral methods”
runa et al.
(ICLR 2015) (NIPS 2016)
(slide inspired by Alexander Gaunt’s talk on GNNs)
g UNIVERSITEIT VAN AMSTERDAM Structured Deep Models Thomas Kipf 10

GbR 2019



THE FRAMEWORK OF
CONSTRAINED-BASED LEARNING

GbR 2019



Constraint-based learning

external “rules”

/
6(F(2)) = 0
AN

given task to be learned

everything revolves around this compositional structure
Gnecco et al, Neural Computation 2015



Supervised Learning

architectural and environmental constraints

£ =1{((0,0),0), (0, 1), 1), ((1,0), 1), ((1, 1),0)} =

“hard’” architectural constraints

Trz — 0(W31Tk1 + WaaTra + b3) =0

Ta — O(Wa1Tp1 + Wa2Tp2 +b4) =0 w=1,2,3,4
Trs — 0(W53Tx3 + W54Tra + bg) =0

training set constraints

r15 =1, xo5 =1, 235 =0, 245 =0

JJomawed} ueidueade

GbR 2019



Architectural constraints

Supervised learning, Lagrangian formulation

minimize E(w) — >: >: V(CCm', ymﬁ)

k=1:€0
subject to L — 0
ehio. gu=e 2 Wity ) =
k=1,...,¢ hard constraint ™ jepa(q)
/ /
=) S: V(Zris Yni) + Z Z Aki (Cl?m' —o( Z wz‘jib’kj)>
k=11€0 1€e HUO k=1 jEpa()

GbR 2019



“Saddle moves’: gradient descent/ascent

A more biologically plausibile solution than Backpropagation
saddle points of the Lagrangian

gradient descent
Lri < Tri — nxamm[/

)\m; < )\m' -+ 77>\a>\mL gradient ascent

ki — Lki — U( Z wjjiB,ﬁ) — 0
)

: : epa(t
saddle points of the Lagrangian jepal
Lagrangian multipliers, straw and support neurons!

Network growing and constraint selection ...

GbR 2019



LOCAL PROPAGATION
IN GRAPHIC NEURAL NETWORKS
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Constrained-based expression
of data structures

G(x) = max(||z[|1 —¢€,0)

— € €

Vo €V, G (4 — fal@nefo]s nefu]s Liw.chw])s Lpa[u] 0) s Tos lo]0f,)) =0

transition function

veSCV supervised nodes

output function

min ZL(fr(‘xv‘efr)ayv)

efcwefr?X ’UES

subject to G (2o — fa(@nefu]s lnefv] L(w.ch[o])s Lpafo] v)s Tos lo]07,)) =0, Yo eV



Constrained-based expression of data structures (con’t)

L(0f,,05,., X, A) = Z L(fr(zo]0f,), yu)+

veES
+>\vg (va — fa (xne[v]a lne[fu]a l(v,ch[v])a l(pa['v],v)a Lo, Ly |9fa,))}

in _max L(0y,,0f,,X,A
o, 0 max L(0,,0p,, X, A)

e N WA I A T » e

axv w: vEne
== 2 NGufi
(99 o =
80 f Zs* Lo claelienis @EnesiE better suited for generalization
" ve A
oc G
o\, advantages from | insensitiveness

gradient ascent




Backpropagation vs Local Propagation




When new graphs come ...

constraints on state propagation d
constraints on supervision a &
f C
c
g
¢ f g
9 a
' b
d

1

constraints on state propagation

duluaes| pasiadadns-1was

, You can always enforce state propagation

5 r, = Z h'w(lnal(n,u)amU7lu)a ne€N

u€ne[n]



Deep GNN

Deep GNN model

0/76;).
2y
1,
N
/)70
(Y
\ N

(a) A shallow GNN. (b) A deep GNN.
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Conclusions

® GNN as diffusion machines and its evolution
® Constrained-based learning

® Saddle move algorithms and local computation

® The natural links with logic

® | earning of constraints and explanation
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Surveys

* PW.Battaglia, J. B. Hamrick,V. Bapst, A. Sanchez-Gonzalez,V. Zambaldi, M. Malinowski,
A.Tacchetti, D. Raposo, A. Santoro, R. Faulkner et al.,“Relational inductive biases, deep
learning, and graph networks,” arXiv preprint arXiv:1806.01261,2018.
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Software resources at SAILAB
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Machine Learning
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SBN: 978-0-08-100659-7 A focused approach that covers the deep ideas of machine learning through a

UB DATE: November 2017 variety of specific techniques

IST PRICE: £59.99/€70.95/599.95

ORMAT: Paperback KEY FEATURES

AGES: c. 580 « It is an introductory book for all readers who love in-depth explanations of
UDIENCE fundamental concepts.
Upper level undergraduate and « It is intended to stimulate questions and help a gradual conquering of basic
graduate students taking a methods, more than offering “recipes for cooking.”
machine learning course in « It proposes the adoption of the notion of constraint as a truly unified
computer science departments and treatment of nowadays most common machine learning approaches, while
professionals involved in relevant combining the strength of logic formalisms dominating in the Al community.
areas of artificial intelligence « It contains a lot of exercises along with the answers, according to a slight

modification of Donald Knuth’s difficulty ranking.
« It comes with a companion Web site to assist more on practical issues.

QUOTES

A fairly comprehensive and original book on machine learning, including deep
learning, written from a constraint-based perspective where Marco Gori shares
his passion for the topic with his reader. The book comes also with a set of
useful problems, exercises, solutions, as well as a companion web site.

Pierre Baldi, University of California Irvine

This very interesting book brings a fresh look at machine learning and deep
learning from the broad point of view in which learning corresponds to satisfying
constraints, encompassing the perceptual as well as the symbolic, soft as well as
hard constraints.

Yoshua Bengio, Université de Montréal

A real tour-de-force across the landscape of a field -- machine learning -- which
is developing very rapidly and is transforming a large swath of today's science

and engineering of intelligence.

Tomaso Poggio, MIT




