Graph networks for learning about complex systems

- Peter Battaglia
 - DeepMind

Workshop on Graph Neural Networks Siena, Italy July 22, 2019

Many complex systems are structured

Molecule

Rigid Body System

Sentence

The brown dog jumped.

Mass-Spring System

n-body System

Image

Many complex systems are structured

Rigid Body System

Sentence and Parse Tree

The brown dog jumped.

Image and Fully-Connected Scene Graph

The standard deep learning toolkit...

... is not well-suited to reasoning over structured representations.

State

The standard deep learning toolkit...

But graph neural networks, which can learn a form of message-passing on graphs, are.

... is not well-suited to reasoning over structured representations.

State

n-body System

n-body System

Edge function

 $\mathbf{e}'_k \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$

Compute "message" from lacksquarenode and edge attributes associated with an edge

Edge function

 $\mathbf{e}'_k \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$

Compute "message" from ulletnode and edge attributes associated with an edge

n-body System

n-body System

Edge function

 $\mathbf{e}'_k \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$

Compute "message" from lacksquarenode and edge attributes associated with an edge

n-body System

Edge function

Node function

$$\mathbf{e}'_k \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$$

Compute "message" from node and edge attributes associated with an edge

- $\mathbf{v}'_k \leftarrow \phi^v(\bar{\mathbf{e}}'_i, \mathbf{v}_i, \mathbf{u})$

Update node info from previous node state and aggregated "messages"

Edge function

Node function

$$\mathbf{e}'_k \leftarrow \phi^e(\mathbf{e}_k, \mathbf{v}_{r_k}, \mathbf{v}_{s_k})$$

Compute "message" from node and edge attributes associated with an edge

- $\mathbf{v}'_k \leftarrow \phi^v (\bar{\mathbf{e}}$

n-body System

$$ar{\mathbf{e}}_i', \mathbf{v}_i, \mathbf{u})$$

Update node info from previous node state and aggregated "messages"

Trained to predict node states at t_1 from states at t_0

Physical systems as graphs

n-body

Nodes: bodies Edges: gravitational forces

Balls

- Nodes: balls
- Edges: rigid collisions between balls, and walls

String

Nodes: masses

Edges: springs and rigid collisions

1000-step rollouts of true (top row) vs predicted (bottom row)

n-body

Balls

String

Zero shot generalisation to larger systems

n-body

True

Balls

String

Interaction Network: Predicting potential energy

Global function

 $\mathbf{u}' \leftarrow \phi^u(\bar{\mathbf{v}}')$

Rather than making node-wise lacksquarepredictions, edge and node updates can be used to make global predictions.

n-body System

Trained to predict system's potential energy

Visual interaction network: Simulate from input images

Multi-frame encoder (conv net-based)

Interaction network

Watters et al., 2017, NeurIPS

Visual interaction network: Simulate from input images

Mass-springs

True

Model

Bouncing balls

True

Model

Can even predict invisible objects, inferred from how they affect visible ones

Watters et al., 2017, NeurIPS

Relation Network (RN) for scene understanding

- Classify scenes

- Infer novel scene structures • Learn object factorizations from input states or images Support one-shot learning

No node updates, where instead all per-edge outputs are summed and passed to a global function

Our experiments showed that RNs can learn to:

Raposo et al., 2017, ICLR workshop

CLEVR Visual Question-Answering (VQA) dataset

There is a sphere with the same size as the metal cube; is it made of the same material as the small red sphere?

RN architecture for VQA

Results: RN applied to CLEVR

Results: RN applied to bAbl Q-A dataset

Sandra moved to the garden. John moved to the office. Sandra journeyed to the bathroom. Mary moved to the hallway. Daniel travelled to the office. John went back to the garden. John moved to the bedroom.

Where is Sandra? **bathroom**

Model

- Entities are LSTM-encoded sentences
- Input to an RN

Results

Solves 18/20 bAbl tasks

Results: RN can infer relations in dot motion

Trained on mass-spring systems

Results: RN can infer relations in dot motion

Trained on mass-spring systems

Graph Networks (GNs)

Why do we need another Graph Neural Network variant?

We designed GNs to be both expressive, and easy to implement ullet

Graph Networks (GNs)

Why do we need another Graph Neural Network variant?

- We designed GNs to be both expressive, and easy to implement
- A GN block is a "graph-to-graph" function approximator
 - The output graph's structure (number of nodes and edge connectivity) matches the input graph's The output graph-, node-, and edge-level attributes will be functions of the input graph's

What kind of graphs do GNs operate on?

"Graph": directed, attributed multi-graph with a global attribute

- "Directed": one-way edges, from a "sender" node to a "receiver" node
- "Multi-graph": there can be more than one edge between vertices, including self-edges
- "Attribute": properties that can be encoded as a vector, set, or even another graph
- "Attributed": edges and vertices have attributes associated with them
- "Global attribute": a graph-level attribute

Graph: $G = (\mathbf{u}, V, E)$

- Global attribute: u
- Node attributes: $V = {\mathbf{v}_i}_{i=1:N^v}$
- Edge attributes, sender node indices, receiver node indices: $E = \{(\mathbf{e}_k, s_k, r_k)\}_{k=1:N^e}$ $s_k, r_k \in \{1, \dots, N^v\}$

How does a GN block process a graph?

For each edge, $\mathbf{e}_k, \mathbf{v}_{s_k}, \mathbf{v}_{r_k}, \mathbf{u}$, are passed to an "edge-wise function":

 $\mathbf{e}'_{k} \leftarrow \phi^{e} \left(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, \mathbf{u} \right)$

Node block

For each node, $\bar{\mathbf{e}}_i', \mathbf{v}_i, \mathbf{u}$, are passed to a "node-wise function": $\mathbf{v}_i' \leftarrow \phi^v \left(\mathbf{\bar{e}}_i', \mathbf{v}_i, \mathbf{u} \right)$

Global block

Across the graph, $\, \bar{e}', \bar{v}', u \,$, are passed to a "global function":

 $\mathbf{u}' \leftarrow \phi^u \left(\mathbf{\bar{e}}', \mathbf{\bar{v}}', \mathbf{u} \right)$

Composing GN blocks

The GN's graph-to-graph interface promotes stacking GN blocks, passing one GN's output to another GN as input

Non-local Neural Nets / Self-Attention in the GN formalism

attention weight, which is used to rescale the pooled edge outputs ($\rho^{e \rightarrow v}$ below)

$$egin{aligned} & \mathcal{O}^{\circ}\left(\mathbf{e}_{k},\mathbf{v}_{r_{k}},\mathbf{v}_{s_{k}},\mathbf{u}
ight)\coloneqq J^{\circ}\left(\mathbf{v}_{r_{k}},\mathbf{v}_{s_{k}}
ight)\ & \phi^{v}\left(ar{\mathbf{e}}_{i}',\mathbf{v}_{i},\mathbf{u}
ight)\coloneqq f^{v}(ar{\mathbf{e}}_{i}')\ & &
ho^{e
ightarrow v}\left(E_{i}'
ight)\coloneqq rac{1}{\sum_{\{k:\,r_{k}=i\}}a_{k}'}\sum_{\{k:\,r_{k}=i\}}a_{k}'\mathbf{b}_{k}' \end{aligned}$$

The edge function has two components — a scalar-valued pairwise interaction among nodes (α^{e} below), and a vector-valued function of the sender node (β^e below). The scalar component is the unnormalized

 $= (\alpha^{e} (\mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}), \beta^{e} (\mathbf{v}_{s_{k}})) = (a'_{k}, \mathbf{b}'_{k}) = \mathbf{e}'_{k}$

Systems: "DeepMind Control Suite" (Mujoco) & real JACO

DeepMind Control Suite (Tassa et al., 2018)

Kinematic tree of the actuated system as a graph

Controllable physical system as a graph:

- Bodies \rightarrow Nodes
- Joints \rightarrow Edges
- Global properties

Forward model: supervised, 1-step training w/ random control inputs

Input graph (t)

Chained 100-step predictions

Prediction Fixed Swimmer6

Expected

Next graph (t+1)

GN forward model: Multiple systems & zero-shot generalization

Single model trained:

• Pendulum, Cartpole, Acrobot, Swimmer6 & Cheetah

Zero-shot generalization: Swimmer

- # training links: {**3**, **4**, **5**, **6**, -, **8**, **9**, -, -, ...}
- # testing links: {-, -, -, -, 7, -, -, **10-14**}

GN forward model: Real JACO data

Recurrent GN

Prediction Fixed Real JACO

System identification: GN-based inference, under diagnostic control inputs

Prediction System ID Cartpole ID phase

Unobserved system parameters (e.g. mass, length) are implicitly inferred

Control: Model-based planning

Trajectory optimization: the GN-based forward model is differentiable, so we can backpropagate through it, and find a sequence of actions that maximize reward

Control: Multiple systems via a single model

Control: Zero-shot control

Control: Multiple reward functions

Relational forward models for multi-agent RL

Tacchetti et al., 2019, ICLR

Stag hunt

Step 0 with last actions

Graph representation

Forward prediction performance

Interpretable learned representations

Tacchetti et al., 2019, ICLR

Agents learn faster with model-augmented observations

- Train a set of agents to perform a game.
- 2. Train an RFM to predict the agents' future actions.
- 3. Train a new agent, whose observations are augmented with the RFM's message magnitudes.

The new agent (blue curve) trains faster in all environments.

Tacchetti et al., 2019, ICLR

Humans are a "construction species"

Humans are a "construction species"

Our construction behaviors are:

- Combinatorial
- + Structured
- + Use rich physical knowledge

Graph networks

Pick up **blocks** and place them in the scene (and optionally make them sticky)

+1 per target -0.5 per sticky block

+1 per target -0.5 per sticky block

+1 per target Free sticky blocks

+1 per target -0.5 per sticky block

+1 per target Free sticky blocks

Length covered -2 per sticky block

+1 per target -0.5 per sticky block

+1 per target Free sticky blocks

Length covered -2 per sticky block

Length covered -0.5 per sticky block

Graph net-based agent: model-free

Can be thought of as "graph building" agent

Graph net-based agent: model-based

Can be thought of as "graph building" agent

Absolute vs relative actions

Actions

Results: "Silhouette" task

Absolute Actions

Reward: +1 per target, -0.5 per sticky block

Object-Centric Actions

Results: "Connecting" task

Absolute Actions

Object-Centric Actions

Reward: +1 per target, free sticky blocks

Results: "Covering" task

Absolute Actions

Reward: proportional to length covered, -2 per sticky block

Object-Centric Actions

Results: "Covering hard" task

Absolute Actions

Reward: proportional to length covered, -0.5 per sticky block

Object-Centric Actions

Results: Absolute vs relative actions

Results: Planning agent (using MCTS)

Build Graph Nets in Tensorflow

github.com/deepmind/graph nets

IPython Notebook demos (All use same architecture)

Shortest path:

True

Sort: item-to-item connections

Time 0

Sorting:

Predicting physics:

Shortest path: predictions at each message-passing step

Predicted

Physics: rollout of mass-spring system pinned at ends

Build Graph Nets in Tensorflow

Example code for getting started:

```
# Provide your own functions to generate graph-structured data.
input_graphs = get_graphs()
# Create the graph network.
graph_net_module = gn.modules.GraphNetwork(
    edge_model_fn=lambda: snt.nets.MLP([32, 32]),
    node_model_fn=lambda: snt.nets.MLP([32, 32]),
    global_model_fn=lambda: snt.nets.MLP([32, 32]))
```

Pass the input graphs to the graph network, and return the output graphs. output_graphs = graph_net_module(input_graphs)

For GNN libraries in PyTorch, check out:

- \bullet
- Deep Graph Library: <u>github.com/dmlc/dgl</u> \bullet

github.com/deepmind/graph nets

pytorch_geometric: github.com/rusty1s/pytorch_geometric (for a GN analog, see MetaLayer)

Graph neural networks: a first-class member of the deep learning toolkit.

- simulation, but also more sophisticated patterns of reasoning.

Graph neural networks: a first-class member of the deep learning toolkit.

Learned message-passing in graphs can support classification/regression,

- simulation, but also more sophisticated patterns of reasoning.
- are effective in domains for which less structured methods struggle.

• Graph neural networks: a first-class member of the deep learning toolkit.

Learned message-passing in graphs can support classification/regression,

• RL agents with graph-structured inputs, outputs, and/or latent representations

- simulation, but also more sophisticated patterns of reasoning.
- are effective in domains for which less structured methods struggle.

• Graph neural networks: a first-class member of the deep learning toolkit.

Learned message-passing in graphs can support classification/regression,

RL agents with graph-structured inputs, outputs, and/or latent representations

• Build Graph Nets in Tensorflow: github.com/deepmind/graph nets

Key collaborators

Razvan Pascanu Jess Hamrick Alvaro Sanchez-Gonzalez Victor Bapst Kim Stachenfeld Carl Doersch Nick Watters Andrea Tacchetti Theophane Weber Daniel Zoran Mateusz Malinowski David Raposo Adam Santoro Nicholas Heess Koray Kavukcuoglu

References

Battaglia et al., 2016, NIPS Watters et al., 2017, NIPS Raposo et al., 2017, ICLR workshop Santoro et al., 2017, NIPS Battaglia et al. 2018 arXiv Sanchez-Gonzalez et al., 2018, ICML Tacchetti et al., 2019, ICLR Bapst et al., 2019, ICML