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The standard deep learning toolkit…

Convolutional neural network (CNN)Multi-layer perceptron (MLP) Recurrent neural network (RNN)

…is not well-suited to reasoning over structured representations.

But graph neural networks, which can learn a 
form of message-passing on graphs, are.



Interaction Network: Learning simulation as message-passing

Battaglia et al., 2016, NeurIPS



Edge function 

• Compute “message” from 
node and edge attributes 
associated with an edge

Battaglia et al., 2016, NeurIPS
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Edge function 

• Compute “message” from 
node and edge attributes 
associated with an edge

Node function 

• Update node info from 
previous node state and 
aggregated “messages”

Battaglia et al., 2016, NeurIPS
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k  �v(ē0i,vi,u)e0k  �e(ek,vrk ,vsk)



Edge function 

• Compute “message” from 
node and edge attributes 
associated with an edge

Node function 

• Update node info from 
previous node state and 
aggregated “messages”

t0 t1

Trained to predict node states 

at t1 from states at t0

Battaglia et al., 2016, NeurIPS

Interaction Network: Learning simulation as message-passing
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k  �v(ē0i,vi,u)e0k  �e(ek,vrk ,vsk)



Nodes: bodies

Edges: gravitational forces

Nodes: balls

Edges: rigid collisions between 
            balls, and walls

Nodes: masses

Edges: springs and rigid 

            collisions

Physical systems as graphs

Battaglia et al., 2016, NeurIPS
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1000-step rollouts of true (top row) vs predicted (bottom row)

Battaglia et al., 2016, NeurIPS
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Zero shot generalisation to larger systems

Battaglia et al., 2016, NeurIPS



Interaction Network: Predicting potential energy

Global function 

• Rather than making node-wise 
predictions, edge and node 
updates can be used to make 
global predictions.

P.E.

Trained to predict system’s 

potential energy

Battaglia et al., 2016, NeurIPS
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Watters et al., 2017, NeurIPS

Multi-frame encoder (conv net-based) Interaction network

Visual interaction network: Simulate from input images



Watters et al., 2017, NeurIPS

Bouncing ballsMass-springs

ModelTrue ModelTrue

Can even predict invisible objects, inferred from how they affect visible ones

Visual interaction network: Simulate from input images



Our experiments showed that RNs can learn to:

• Classify scenes

• Infer novel scene structures

• Learn object factorizations from input states or images

• Support one-shot learning

Raposo et al., 2017, ICLR workshop

No node updates, where instead all per-edge outputs are summed and passed to a global function

Relation Network (RN) for scene understanding



There is a sphere with the same size as the metal cube;  
is it made of the same material as the small red sphere?

Santoro et al., 2017, NeurIPS

CLEVR Visual Question-Answering (VQA) dataset



There is a sphere with the same 
size as the metal cube;  
is it made of the same material 
as the small red sphere?

Yes

There is ... red sphere?

RN architecture for VQA

Santoro et al., 2017, NeurIPS



Santoro et al., 2017, NeurIPS

Results: RN applied to CLEVR



Sandra moved to the garden. 
John moved to the office. 
Sandra journeyed to the bathroom. 
Mary moved to the hallway. 
Daniel travelled to the office. 
John went back to the garden. 
John moved to the bedroom. 

Where is Sandra? bathroom        

Model

• Entities are LSTM-encoded sentences

• Input to an RN


Results

• Solves 18/20 bAbI tasks

Santoro et al., 2017, NeurIPS

Results: RN applied to bAbI Q-A dataset



Santoro et al., 2017, NeurIPS

Trained on mass-spring systems

Input

Ea
rly

La
te

Model True

Input Model True

Results: RN can infer relations in dot motion



Generalizes to point-light walkers

Trained on mass-spring systems

Input

Ea
rly

La
te

Model True

Input Model True

Santoro et al., 2017, NeurIPS

Results: RN can infer relations in dot motion
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• We designed GNs to be both expressive, and easy to implement



Graph Networks (GNs)
Why do we need another Graph Neural Network variant? 

• We designed GNs to be both expressive, and easy to implement 

• A GN block is a “graph-to-graph” function approximator


• The output graph’s structure (number of nodes and edge connectivity) matches the input graph’s

• The output graph-, node-, and edge-level attributes will be functions of the input graph’s

Graph Network (Battaglia et al. 2018)

(a type of Graph Neural Network (Scarselli et al. 2009))




What kind of graphs do GNs operate on?
“Graph”: directed, attributed multi-graph with a global attribute 

• “Directed”: one-way edges, from a “sender” node to a “receiver” node

• “Multi-graph”: there can be more than one edge between vertices, including self-edges

• “Attribute”: properties that can be encoded as a vector, set, or even another graph

• “Attributed”: edges and vertices have attributes associated with them

• “Global attribute”: a graph-level attribute


Graph:  
• Global attribute: 

• Node attributes: 

• Edge attributes, sender node indices, receiver node indices:

u
V = {vi}i=1:Nv

E = {(ek, sk, rk)}k=1:Ne

sk, rk 2 {1, . . . , Nv}

G = (u, V, E)



How does a GN block process a graph?

ek,vsk ,vrk ,u

ē0i,vi,u

ē0, v̄0,u

Edge block 
For each edge,                            , 

are passed to an “edge-wise function”:


Node block 
For each node,                  , are 

passed to a “node-wise function”:


Global block 
Across the graph,                  , are 

passed to a “global function”:




Message-Passing NN (eg. Interaction Net)

Gilmer et al. 2017

Non-Local NN (eg. Transformer)

Vaswani et al. 2017; Wang et al. 2017

Relation Network

Raposo et al. 2017; Santoro et al. 2017

Deep Set

Zhang et al. 2017

Graph Network

(a type of Graph Neural Network)


Battaglia et al. 2018



The GN’s graph-to-graph interface promotes stacking GN blocks, passing one GN’s output to another GN as input

Shared GN core Encode-process-decode Recurrent GN architecture

Composing GN blocks



Non-local Neural Nets / Self-Attention in the GN formalism
The edge function has two components—a scalar-valued pairwise interaction among nodes (      below), 
and a vector-valued function of the sender node (      below). The scalar component is the unnormalized 
attention weight, which is used to rescale the pooled edge outputs (          below)



Systems: "DeepMind Control Suite" (Mujoco) & real JACO

DeepMind Control Suite (Tassa et al., 2018)

JACO Arm



Sanchez-Gonzalez et al., 2018, ICML

Kinematic tree of the actuated system as a graph

Controllable physical system as a graph:


• Bodies → Nodes


• Joints → Edges


• Global properties



Chained 100-step predictions

Input graph (t) Next graph (t+1)

Sanchez-Gonzalez et al., 2018, ICML

Forward model: supervised, 1-step training w/ random control inputs



Single model trained:

• Pendulum, Cartpole, Acrobot, 

Swimmer6 & Cheetah

Zero-shot generalization: Swimmer

• # training links: {3, 4, 5, 6, -, 8, 9, -, -, …}

• # testing links:  {-,  -,  -,  -, 7, -,  -, 10-14}

Sanchez-Gonzalez et al., 2018, ICML

GN forward model: Multiple systems & zero-shot generalization



(Real JACO trajectories, rendered using Mujoco)

Recurrent GN

Sanchez-Gonzalez et al., 2018, ICML

GN forward model: Real JACO data



Unobserved system parameters (e.g. mass, length) are implicitly inferred

Sanchez-Gonzalez et al., 2018, ICML

System identification: GN-based inference, under diagnostic control inputs



Trajectory optimization: the GN-based forward model is differentiable, so we can backpropagate 
through it, and find a sequence of actions that maximize reward 

Sanchez-Gonzalez et al., 2018, ICML

Control: Model-based planning



Sanchez-Gonzalez et al., 2018, ICML

Control: Multiple systems via a single model



Sanchez-Gonzalez et al., 2018, ICML

Control: Zero-shot control



Sanchez-Gonzalez et al., 2018, ICML

Control: Multiple reward functions



Stag hunt

Forward prediction performance

Relational forward models for multi-agent RL
Graph representation

Tacchetti et al., 2019, ICLR



Magnitude of edge/“message” vector is meaningful

Interpretable learned representations

Tacchetti et al., 2019, ICLR



Tacchetti et al., 2019, ICLR

1. Train a set of agents to perform a game.

2. Train an RFM to predict the agents’ future actions.

3. Train a new agent, whose observations are augmented with 

the RFM’s message magnitudes.

The new agent (blue curve) trains faster in all environments.

Agents learn faster with model-augmented observations



Humans are a “construction species”



Humans are a “construction species”

Our construction behaviors are:  


    Combinatorial

+ Structured

+ Use rich physical knowledge


  Graph networks



(a) Silhouette (c) Covering (d) Covering Hard(b) Connecting
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Pick up blocks and place them in the scene

(and optionally make them sticky)

Avoid touching obstacles

Bapst et al., 2019, ICML

Structured agents for physical construction
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+1 per target 
-0.5 per sticky block

+1 per target 
Free sticky blocks

Length covered 
-2 per sticky block

Length covered 
-0.5 per sticky block

Bapst et al., 2019, ICML
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Structured agents for physical construction



Bapst et al., 2019, ICML

Graph net-based agent: model-free
Can be thought of as “graph building” agent



Bapst et al., 2019, ICML

Graph net-based agent: model-based
Can be thought of as “graph building” agent



Bapst et al., 2019, ICML

Absolute vs relative actions



Object-Centric ActionsAbsolute Actions

Reward: +1 per target, -0.5 per sticky block

Bapst et al., 2019, ICML

Results: “Silhouette” task



Absolute Actions Object-Centric Actions

Reward: +1 per target, free sticky blocks

Bapst et al., 2019, ICML

Results: “Connecting” task



Absolute Actions Object-Centric Actions

Reward: proportional to length covered, -2 per sticky block

Bapst et al., 2019, ICML

Results: “Covering” task



Absolute Actions Object-Centric Actions

Reward: proportional to length covered, -0.5 per sticky block

Bapst et al., 2019, ICML

Results: “Covering hard” task



Bapst et al., 2019, ICML

Results: Absolute vs relative actions
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Bapst et al., 2019, ICML

Results: Planning agent (using MCTS)



Build Graph Nets in Tensorflow
github.com/deepmind/graph_nets

Shortest path:

Sorting:

Predicting physics:

IPython Notebook demos

(All use same architecture)

http://github.com/deepmind/graph_nets


Build Graph Nets in Tensorflow
github.com/deepmind/graph_nets

Example code for getting started:

For GNN libraries in PyTorch, check out:

• pytorch_geometric: github.com/rusty1s/pytorch_geometric (for a GN analog, see MetaLayer)

• Deep Graph Library: github.com/dmlc/dgl

http://github.com/deepmind/graph_nets
http://github.com/rusty1s/pytorch_geometric
http://github.com/dmlc/dgl


• Graph neural networks: a first-class member of the deep learning toolkit.
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• Graph neural networks: a first-class member of the deep learning toolkit.
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