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Many complex systems are structured
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The standard deep learning toolkit...

Multi-layer perceptron (MLP) Convolutional neural network (CNN) Recurrent neural network (RNN)
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...I1S not well-suited to reasoning over structured representations.
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...I1S not well-suited to reasoning over structured representations.

But graph neural networks, which can learn a
form of message-passing on graphs, are.



Interaction Network: Learning simulation as message-passing
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Interaction Network: Learning simulation as message-passing

n-body System

Edge function Node function
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« Compute “message” from  Update node info from
node and edge attributes previous node state and
associated with an edge aggregated “messages”
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Interaction Network:

Edge function

e;c A ¢6(ek7 V?“kavsk)

Compute “message” from
node and edge attributes
associated with an edge

Learning simulation as message-passing

n-body System
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Physical systems as graphs
Balls

Nodes: bodies Nodes: balls Nodes: masses
Edges: gravitational forces Edges: rigid collisions between Edges: springs and rigid
balls, and walls collisions

Battaglia et al., 2016, NeurlPS



1000-step rollouts of true (top row) vs predicted (bottom row)
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Zero shot generalisation to larger systems

n-body Balls

Battaglia et al., 2016, NeurlPS



Interaction Network: Predicting potential energy

n-body System _
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Global function .
potential energy
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 Rather than making node-wise \
predictions, edge and node @ — PE.
updates can be used to make
global predictions.
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Visual interaction network: Simulate from input images

Multi-frame encoder (conv net-based)
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Visual interaction network: Simulate from input images

Mass-springs Bouncing balls

True Model

Can even predict invisible objects, inferred from how they affect visible ones

Watters et al., 2017, NeurlPS



Relation Network (RN) for scene understanding

No node updates, where instead all per-edge outputs are summed and passed to a global function

Artificial scene categories, only discriminable by spatial relations
Object types Scene class structure Scene instance
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Our experiments showed that RNs can learn to:
* Classify scenes

e |Infer novel scene structures

* Learn object factorizations from input states or images
e Support one-shot learning

Raposo et al., 2017, ICLR workshop




CLEVR Visual Question-Answering (VQA) dataset

There 1s a sphere with the same size as the metal cube;
15 1t made of the same material as the small red sphere?

Santoro et al., 2017, NeurlPS
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size as the metal cube;

i1s 1t made of the same material
as the small red sphere?

_B_,

RN architecture for VQA

Final CNN feature maps

» There 1is

o - B

RN

vy

Object pair
with question

BT | — O —

- _b- —(Z)—»l:.—» Yes
—> EEO — ‘
A

Element-wise
sum

. red sphere?

|
LSTM

Santoro et al., 2017, NeurlPS



Accuracy
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Results: RN applied to CLEVR
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Results: RN applied to bAbl Q-A dataset

Sandra moved to the garden. Model

John moved to the office. * Entities are LSTM-encoded sentences
Sandra journeyed to the bathroom. * Inputtoan RN

Mary moved to the hallway.

Daniel travelled to the office. Results

John went back to the garden. * Solves 18/20 bADI tasks

John moved to the bedroom.

Where 1s Sandra? bathroom

Santoro et al., 2017, NeurlPS



Results: RN can infer relations in dot motion

Trained on mass-spring systems

Input Model True

Late

Santoro et al., 2017, NeurlPS



Results: RN can infer relations in dot motion

Trained on mass-spring systems

Input Model True

Late

Generalizes to point-light walkers

Santoro et al., 2017, NeurlPS



Graph Networks (GNs)

Why do we need another Graph Neural Network variant?
 We designed GNs to be both expressive, and easy to implement



Graph Networks (GNs)

Why do we need another Graph Neural Network variant?
 We designed GNs to be both expressive, and easy to implement

* A GN block is a “graph-to-graph” function approximator

 The output graph’s structure (humber of nodes and edge connectivity) matches the input graph’s
 The output graph-, node-, and edge-level attributes will be functions of the input graph’s
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Graph Network (Battaglia et al. 2018) |
(a type of Graph Neural Network (Scarselli et al. 2009)) |
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What kind of graphs do GNs operate on”?

“Graph”: directed, attributed multi-graph with a global attribute
 “Directed”: one-way edges, from a “sender” node to a “receiver’ node
 “Multi-graph”: there can be more than one edge between vertices, including self-edges
 “Attribute”: properties that can be encoded as a vector, set, or even another graph
e “Attributed”: edges and vertices have attributes associated with them

 “Global attribute”: a graph-level attribute
Attributes

£ 0 o

Skc—>nv’r’k-

Graph: G = (u,V, FE
* Global attribute: u
* Node attributes: V = {v,;};—1.nv
» Edge attributes, sender node indices, receiver node indices: F = {(eg, Sk, Tk) }k—=1:Ne

Sk, Tk € {1,...,NU}



How does a GN block process a graph?

Edge block
For each edge, €r, Vs, ,Vy, , U,
are passed to an “edge-wise function”:

e;{; — ¢° (eka Vres Vs 11)

Node block
—/
For each node, €,,V;,U | are
passed to a “node-wise function”:
/ vV (=

Edge block Node block Global block

Global block
Across the graph, €', v',u , are
passed to a “global function”;

u «— ¢%(€,v/,u)




Message-Passing NN (eg. Interaction Net)
Gilmer et al. 2017

Edge block Node block Global block

Deep Set
Zhang et al. 2017

Edge block Node block

Global block

—— — e ———

Graph Network
(a type of Graph Neural Network)
Battaglia et al. 2018

Edge block

Node block

-—

Global block

Non-Local NN (eg. Transformer)
Vaswani et al. 2017; Wang et al. 2017

Edge block Node block Global block

r Relation Network
| Raposo et al. 2017; Santoro et al. 2017

Global block

Edge block Node block



Composing GN blocks

The GN’s graph-to-graph interface promotes stacking GN blocks, passing one GN’s output to another GN as input

Shared GN core Encode-process-decode Recurrent GN architecture

Ginp Gout anp Gt



Non-local Neural Nets / Self-Attention in the GN formalism

The edge function has two components—a scalar-valued pairwise interaction among nodes (a® below),

and a vector-valued function of the sender node ( 3° below). The scalar component is the unnormalized
attention weight, which is used to rescale the pooled edge outputs (p°~? below)
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Edge block Node block Global block

(VT‘kavSk) — (ae (Vrk,Vsk), 58 (VSk)) — (a;wb;c) — e;c




Systems: "DeepMind Control Suite" (Mujoco) & real JACO

Random Control System Trajectories

—

/
!
Pendulum Cartpole Swimmerb

J

dITr:
JACO Arm

Walker2d JACO

DeepMind Control Suite (Tassa et al., 2018)



Kinematic tree of the actuated system as a graph

Controllable physical system as a graph:
 Bodies = Nodes
 Joints — Edges

* Global properties

Sanchez-Gonzalez et al., 2018, ICML



Forward model: supervised, 1-step training w/ random control inputs

Input graph (1) Next graph (t+1)

Chained 100-step predictions

Prediction Fixed Swimmerb

Expected Predicted
Sanchez-Gonzalez et al., 2018, ICML



GN forward model: Multiple systems & zero-shot generalization

Prediction Fixed Multiple Systems (with Cheetah)

Single model trained: GELTIVIVG,)

 Pendulum, Cartpole, Acrobot,
Swimmer6 & Cheetah /

W

Expected Predicted

Prediction Fixed SwimmerN (zero—shot prediction)

L | (Swimmer7)
Zero-shot generalization: Swimmer

* #training links: {3, 4,5,6,-,8,9, -, -, ...}
 #testinglinks: {-, -, -, -, 7, -, -, 10-14}

Expected Predicted

Sanchez-Gonzalez et al., 2018, ICML



GN forward model: Real JACO data

Recurrent GN G — e e
0 @

Prediction Fixed Real JACO

Expected Predicted
Sanchez-Gonzalez et al., 2018, ICML




System identification: GN-based inference, under diagnostic control inputs

Observed Inferred
dynamic phase  abstract
sequence static graph

Unobserved system parameters (e.g. mass, length) are implicitly inferred

Prediction System ID Cartpole
ID phase

L L ]

Real time Slowed down 1/5
Sanchez-Gonzalez et al., 2018, ICML



Control: Model-based planning

Trajectory optimization: the GN-based forward model is differentiable, so we can backpropagate
through it, and find a sequence of actions that maximize reward

Control Fixed JACO
Imitate, full pose (1x)

Target pose Control trajectory

Sanchez-Gonzalez et al., 2018, ICML



Control: Multiple systems via a single model

Control Fixed Multiple Systems

!

Pendulum | Acrobot Cartpole
Balance (3x) Swing up (5x) Balance (3x)

(

Swimmer6 Cheetah
Move towards target (7x) Move forward (5x)

Sanchez-Gonzalez et al., 2018, ICML



Control: Zero-shot control

Control Fixed SwimmerN (zero—shot)
Move towards target (5x)

Swimmerd Swimmer4 SwimmerS Swimmerb Swimmer/ Swimmers8

(zero—shot) (zero—shot) (zero—shot) (zero—shot) (zero—shot)

Swimmer9 SwimmerilQ Swimmertl 1 Swimmer1l2 Swimmer1l3 Swimmer1l4

Sanchez-Gonzalez et al., 2018, ICML




Control: Multiple reward functions

Control Fixed Cheetah (k rewards)

Maximize target (3x)

Horizontal speed

Y

Squared vertical speed

T

Vertical position

&<

Squared angular speed

Control Fixed Walker2d (k rewards)
Maximize target (1x)

L L

Horizontal speed Vertical position

L

Inverse verticality Feet to head height

Sanchez-Gonzalez et al., 2018, ICML




Relational forward models for multi-agent RL

Stag hunt

Step 0 with last actions

Environment Steps

Graph representation
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Tacchetti et al., 2019, ICLR
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Interpretable learned representations

Magnitude of edge/“message” vector is meaningful

Predicted actions and top 5 edges

Edge from stag to agent
N
|
N
N

o
o
L

Edge from teammate to agent (» - '

T T i I T T T T
-1 1 3 On Off -5 =3 -1 1 3
Time until stag eaten

I
w

Stag Respawn

W

N

Before After

# of available apples

Tacchetti et al., 2019, ICLR



Agents learn faster with model-augmented observations

1. Train a set of agents to perform a game.

2. Train an RFM to predict the agents’ future actions.

3. Train a new agent, whose observations are augmented with
the RFM’s message magnitudes.

The new agent (blue curve) trains faster in all environments.

CoopNav StagHunt StagHunt - 4 players CoinGame
30 35
25 30
e 20
T 15
= 15
a 10
RFM + A2C 10
S —— A2C 5
0 0
... T T
0 1 2 3

Environment Steps [M]

Tacchetti et al., 2019, ICLR
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Humans are a “construction species”

Our construction behaviors are:

Combinatorial
y  + Structured
+ Use rich physical knowledge

Graph networks




Structured agents for physical construction

Avoid touching obstacles

Pick up blocks and place them in the scene
(and optionally make them sticky)

Bapst et al., 2019, ICML



Initial

Final

Structured agents for physical construction

(a) Silhouette
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-0.5 per sticky block

Bapst et al., 2019, ICML
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Structured agents for physical construction
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Initial

Final

Structured agents for physical construction

| il
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+1 per target
-0.5 per sticky block
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+1 per target
Free sticky blocks
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Bapst et al., 2019, ICML



Initial

Final

Structured agents for physical construction

+1 per target
-0.5 per sticky block

+1 per target
Free sticky blocks

(a) Silhouette (b) Connecting (c) Covering (d) Covering Hard
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Bapst et al., 2019, ICML



Graph net-based agent: model-free
Can be thought of as “graph building” agent

Observation (t) 4 Graph-based Argmax over ) Action (t)
Q-function edge Q-values
3 ‘
. I
/ “Place block D
on block B,
on its top left”

Bapst et al., 2019, ICML



Graph net-based agent: model-based
Can be thought of as “graph building” agent

Observation (t) 4 Graph-based Argmax over ) Action (t)
Q-function edge Q-values
L ‘
) I
A: / “Place block D
: on block B,
; on its top left”

Bapst et al., 2019, ICML



Actions

Absolute vs relative actions

Continuous
absolute

m

Continuous
relative

Discrete
absolute

Discrete
relative

Bapst et al., 2019, ICML



Results: “Silhouette” task

Absolute Actions Object-Centric Actions
| T
B 2 o B G
HE N I HE N I N S

Reward: +1 per target, -0.5 per sticky block

Bapst et al., 2019, ICML



Results: “Connecting” task

Absolute Actions Object-Centric Actions
| S 1 1 | S [ =1
| [ [ | [ [
[ [ [ R [ [
L —— | e —— |
HE N I HE BN I

Reward: +1 per target, free sticky blocks

Bapst et al., 2019, ICML



Results: “Covering” task

Absolute Actions Object-Centric Actions
D [
L ] [ L [l
[ T [
eSS S——— e —— |
H B B [ T TS S H B 8 B T 0 SRS

Reward: proportional to length covered, -2 per sticky block

Bapst et al., 2019, ICML



Results: “Covering hard” task

Absolute Actions Object-Centric Actions
I | AN |
o i
| T .
HE BN I HE N I

Reward: proportional to length covered, -0.5 per sticky block

Bapst et al., 2019, ICML
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Reward
(All Level

Reward
(Hardest Level)

Results: Absolute vs relative actions

Silhouette

Absolute Relative

3.0
2.5 -
2.0 -
1.5 -
1.0 -
0.5 -
0.0 -

Connecting

3.0
2.5 -
2.0 —
1.5 -
1.0 -
0.5+

0.0 -

Absolute Relative

Covering

Absolute Relative

Cov. Hard

Absolute Relative

Bapst et al., 2019, ICML



Reward

Results: Planning agent (using MCTS)

(d) Cov. Hard

Train Budget
0 ® 10

O 5 10 20 50100 . —
Test Budget

Bapst et al., 2019, ICML



Build Graph Nets in Tensorflow
github.com/deepmind/graph nets

|IPython Notebook demos
(A|| use same arChltecture Shortest path: predictions at each message-passing step

— aFedad e

True Step 1 Step 4 Step 7 Step 10

Sort: item-to-item connections

True Predicted
Physics: rollout of mass-spring system pinned at ends

Sorting:

Predicting physics: u \ﬁ

w—True
= Predicted

Time 0 Time 8 Time 16 Time 32 Time 48


http://github.com/deepmind/graph_nets

Build Graph Nets in Tensorflow
github.com/deepmind/graph nets

Example code for getting started:

# Provide your own functions to generate graph-structured data.
input_graphs = get_graphs()

# Create the graph network.

graph_net_module = gn.modules.GraphNetwork(
edge_model_fn=1lambda: snt.nets.MLP([32, 32]),
node_model fn=lambda: snt.nets.MLP([32, 32]),
global_model_fn=lambda: snt.nets.MLP([32, 32]))

# Pass the 1input graphs to the graph network, and return the output graphs.
output_graphs = graph_net_module(input_graphs)

For GNN libraries in PyTorch, check out:

e pytorch_geometric: github.com/rustyls/pytorch geometric (for a GN analog, see Metalayer)
 Deep Graph Library: github.com/dmlc/dgl



http://github.com/deepmind/graph_nets
http://github.com/rusty1s/pytorch_geometric
http://github.com/dmlc/dgl
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* Graph neural networks: a first-class member of the deep learning toolkit.
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Conclusions

Graph neural networks: a first-class member of the deep learning toolkit.

Learned message-passing in graphs can support classification/regression,
simulation, but also more sophisticated patterns of reasoning.

RL agents with graph-structured inputs, outputs, and/or latent representations
are effective in domains for which less structured methods struggle.

Build Graph Nets in Tensorflow: github.com/deepmind/graph nets



http://github.com/deepmind/graph_nets
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