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Social Network Analysis

Community Detection

Similar users over the networks, 

a  subset of strictly connected

nodes.

Why?

• Viral Marketing, brand awareness

• Advertising Targeting

• Recomendation

Contribute:

A novel algorithm to detect communities

using deep learning approaches on large

datasets
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Deep Learning

Why?

 Train a network topology, predicting communities according to 

relationships that may change over the time.

 All existing approaches are limited

DeepWalk Modularity Based K-means
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Proposed Approach with CNN

Input:

 Matrix with single pixel values

 3 sub-matrices for RGB images

 1 matrix for B/W image

Output:

Probability that input  

image belongs to a  

defined class

Components:

 Convolution Layer

 Max-Pooling layer

 Fully Connected Layer

Traditional Application

 Object detection and image recognition

Goal

 Apply the same deep learning approach  

to social networking, for detecting  

communities
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Output
Probability that input node belongs  

to a community

CNN and Social Networks
Input Construction Ground Truth
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The dimensional challenge

 Image size:

1024 x 1024 pixel

 Matrix values:

1.048.576 x 32 bit = 4,2 MB

 Graph Size:

1.000.000 nodes

 Matrix values:

1.000.000.000.000 x 32 bit = 4000 GB

5

A Deep Learning based Community 

Detection approach



Primitives for sparse Matrices:

 Storing

 Slicing

 Densifying

Conv2D doesn’t work with Sparse  

Matrices

Dense Sparse

4000 GB 120 MB

Re-implementing tf.Conv2D

in a SparseConv2D

exploiting sparse structure of network  

adjacency matrices

Sparsity Approach
 Graph Size:

1.000.000 nodes

 Non-Zero values with

𝟏𝟎–𝟓 𝒔𝒑𝒂𝒓𝒔𝒊𝒕𝒚 𝒈𝒓𝒂𝒅𝒆:

1.000.000 x 32 bit = 120 MB

Proposed Algorithm
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Sparse Max Pooling
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Sparse Max Pooling
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Sparse Max Pooling
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Another Approach: Divide et impera
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Artificial Datasets Large Dataset

 Sparse Random Matrices  Dimension:  Dimension:

 Variable Dimensions 138.000 nodes 1000 nodes

 Variable Sparsity  Sparsity:

𝟕, 𝟏 ∗ 𝟏𝟎–𝟔

 Edges:

25000

Email Dataset

Experimental Protocol
Convolution Time Tests

 SparseConv2D vs Divide et Impera

 Artificial Large Datasets with different dimensions and sparsity

Training Tests

 SparseConv2D loss trend (kernels, levels, optimizer and rate)

 Email Dataset to test whole network

Accuracy Tests

 Using 3 different training

 Evaluation datasets generated from Email Dataset
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Convolution Time Tests

 138.000 nodes, 𝟏𝟎–𝟔

 SparseConv: 12 minutes

 Divide et impera: 602 minutes
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Training
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Entries with Hop Count

 s: hop count of node n ′ to node n

 σ: attenuation factor

 s0: hop count threshold

Evaluation Datasets
Training Set

Test Set

Deleting Edges
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Evaluation Tests

15

A Deep Learning based Community 

Detection approach


