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Social Network Analysis

Community Detection

Similar users over the networks, 

a  subset of strictly connected

nodes.

Why?

• Viral Marketing, brand awareness

• Advertising Targeting

• Recomendation

Contribute:

A novel algorithm to detect communities

using deep learning approaches on large

datasets
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Deep Learning

Why?

 Train a network topology, predicting communities according to 

relationships that may change over the time.

 All existing approaches are limited

DeepWalk Modularity Based K-means
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Proposed Approach with CNN

Input:

 Matrix with single pixel values

 3 sub-matrices for RGB images

 1 matrix for B/W image

Output:

Probability that input  

image belongs to a  

defined class

Components:

 Convolution Layer

 Max-Pooling layer

 Fully Connected Layer

Traditional Application

 Object detection and image recognition

Goal

 Apply the same deep learning approach  

to social networking, for detecting  

communities
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Output
Probability that input node belongs  

to a community

CNN and Social Networks
Input Construction Ground Truth
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The dimensional challenge

 Image size:

1024 x 1024 pixel

 Matrix values:

1.048.576 x 32 bit = 4,2 MB

 Graph Size:

1.000.000 nodes

 Matrix values:

1.000.000.000.000 x 32 bit = 4000 GB
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Primitives for sparse Matrices:

 Storing

 Slicing

 Densifying

Conv2D doesn’t work with Sparse  

Matrices

Dense Sparse

4000 GB 120 MB

Re-implementing tf.Conv2D

in a SparseConv2D

exploiting sparse structure of network  

adjacency matrices

Sparsity Approach
 Graph Size:

1.000.000 nodes

 Non-Zero values with

𝟏𝟎–𝟓 𝒔𝒑𝒂𝒓𝒔𝒊𝒕𝒚 𝒈𝒓𝒂𝒅𝒆:

1.000.000 x 32 bit = 120 MB

Proposed Algorithm
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Sparse Max Pooling
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Sparse Max Pooling
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Sparse Max Pooling
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Another Approach: Divide et impera
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Artificial Datasets Large Dataset

 Sparse Random Matrices  Dimension:  Dimension:

 Variable Dimensions 138.000 nodes 1000 nodes

 Variable Sparsity  Sparsity:

𝟕, 𝟏 ∗ 𝟏𝟎–𝟔

 Edges:

25000

Email Dataset

Experimental Protocol
Convolution Time Tests

 SparseConv2D vs Divide et Impera

 Artificial Large Datasets with different dimensions and sparsity

Training Tests

 SparseConv2D loss trend (kernels, levels, optimizer and rate)

 Email Dataset to test whole network

Accuracy Tests

 Using 3 different training

 Evaluation datasets generated from Email Dataset
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Convolution Time Tests

 138.000 nodes, 𝟏𝟎–𝟔

 SparseConv: 12 minutes

 Divide et impera: 602 minutes
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Training
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Entries with Hop Count

 s: hop count of node n ′ to node n

 σ: attenuation factor

 s0: hop count threshold

Evaluation Datasets
Training Set

Test Set

Deleting Edges
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Evaluation Tests
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