
Graph Neural Networks
A constraint-based formulation a

aIn collaboration with Giuseppe Marra, M. Maggini, S. Melacci and M. Gori

Matteo Tiezzi
DIISM, SAILab
(Siena Artificial
Intelligence Laboratory)

22 July 2019
ACDL Satellite Workshop on Graph Neural Networks

Learning in structured domains

Non-Euclidean (graph or manifold-structured) data such as social
networks, molecular graphs and 3D point clouds in computer
vision

1 25

Graph-focused Tasks

2 25

Node-focused Tasks

3 25

Graph Representation

Traditional machine learning approaches assume to deal with flat
data
Aim at obtaining simple representations from complex data
structures, relying on summary graph statistics, kernel functions,
graph traversals procedures etc.

Pre-processing step, using hand-engineered statistics to extract
structural information into simpler encodings
Limited approaches – loosing useful information, not able to
adapt during learning

4 25

Embedding a graph

Mapping a graph to a real valued vector – concatenating the
features stored in each node, following an order derived from the
connection topology

The encoding of the topology by the position of the node inside
the vector is not well defined for any category of graph – it holds
for Directed Ordered Acyclic Graphs (DOAGs), this does not hold
for generic cyclic graphs

5 25

TheGraphNeuralNetworkModel

The Graph Neural Network Model (GNN)

Introduced in [Scarselli et al. 2009], it is able to process graphs
directly, without the need of a preprocessing step and without any
limitation on the graph type (more general w.r.t Recursive nets,
[Frasconi et al. 1998])
This model exploits neural networks to learn how to encode
nodes of a graph for a given task taking into account both the
information local to each node and the whole graph topology.
The learning process requires, for each epoch, an iterative
diffusion mechanism up to convergence to a stable fixed point

6 25

The Graph Neural Network Model

Given an input graph G = (V, E), where V is a finite set of nodes
and E ⊆ V× V collects the arcs, GNNs apply a two-phase
computation on G
Encoding (aggregate) phase the model computes a state vector
for each node in V by (iteratively) combining the states of
neighboring nodes (i.e. nodes u, v ∈ V that are connected by an
arc (u, v) ∈ E) – exploiting the state transition function fw
Output (readout) phase the latent representations encoded by the
states stored in each node are exploited to compute the model
output – exploiting the output function gw

7 25

Neighbor-based computation

8 25

Non-positional graphs

9 25

Graph Encoding

10 25

Graph Encoding

11 25

Convergence procedure

The recursive application of the state transition function fw() on
the graph nodes yields a diffusion mechanism, whose range
depends on T
In the original GNN model [Scarselli et al. 2009] the convergence
procedure is executed until convergence of the state
representation, i.e. until x(t)n ≃ x(t−1)

n , v ∈ V.
This scheme corresponds to the computation of the fixed point of
the state transition function fw() on the input graph. In order to
guarantee the convergence of this phase, the transition function is
required to be a contraction map.
Banach Fixed Point Theorem

12 25

Reaching Equilibrium

13 25

Lagrangian GNN

GNN: a Constraint formulation

Basically, the encoding phase, through the iteration of fw(), finds a
solution to the fixed point problem defined by the constraint

∀n ∈ V, xn =
∑

(n,v)∈E
fw(ln, l(n,v), xv, lv) (1)

In this case, the states encode the information contained in the
whole graph.
This diffusion mechanism is more general than executing only a
fixed number of iterations (i.e. stacking a fixed number of layers).
However, it can be computationally heavy and, hence, many recent
GNN architectures apply only a fixed number of iterations for all
nodes [Scarselli et al. 2009].

14 25

Lagrangian Propagation GNN
With an approach related to [Carreira-Perpinan et al., 2014] [Taylor et al.
2016], we consider a Lagrangian formulation of the problem by adding
free variables corresponding to the node states xn
With L(gw(xv), yv) as the loss function (target fitting approximation for
node v ∈ S), the formulation of the learning task is

minimize
∑
v∈S

L(gw(xv), yv)

subject to G(xv −
∑

(n,v)∈E

fw(lv, l(v,n), xn, ln)) = 0, ∀ v ∈ V (2)

and G(x) is a function characterized by G(0) = 0.
Apart from classical choices, like G(x) = x or G(x) = x2, we can design
different function shape with desired properties.

lin lin-ϵ abs abs-ϵ squared
G(x) x max(x, ϵ)− max(−x, ϵ) |x| max(|x| − ϵ, 0) x2

Unilateral × × ✓ ✓ ✓
ϵ-insensitive × ✓ × ✓ ×

15 25

Optimization procedure: search for saddle points

The constrained optimization problem can be solved in the
Lagrangian framework by introducing for each constraint a
Lagrange multiplier λv, to define the Lagrangian function
L(θfw , θgw , X,Λ) where Λ is the set of the |V| Lagrangian multipliers.
We can define the unconstrained optimization problem as the
search for saddle points in the adjoint space (θfw , θgw , X,Λ) as:

min
θfw ,θgw ,X

max
Λ

L(θfw , θgw , X,Λ)

where θfw and θgw are the weights of the MLPs implementing the
state transition function and the output function,
The problem can be solved by gradient descent with respect to the
variables θfw , θgw , X and gradient ascent with respect to the
Lagrange multipliers Λ.

16 25

Optimization procedure: search for saddle points

The diffusion mechanism of the state computation is enforced by
means of the constraints.
The learning algorithm is based on a mixed strategy where :

▶ Backpropagation is used to efficiently update the weights of the
neural networks that implement the state transition and output
functions

▶ The diffusion mechanism evolves gradually by enforcing the
convergence of the state transition function to a fixed point by
means of the constraints.

17 25

Reaching Equilibrium

18 25

Experiments

Experiments: node classification benchmarks

Table: Accuracies on the artificial datasets, for the proposed model (Lagrangian
Propagation GNN - LP-GNN) and the standard GNN model for different settings.

Model Subgraph Clique

G ϵ Acc(avg) Acc(std) Acc(avg) Acc(std)

LP-GNN

abs
0.00 96.25 0.96 88.80 4.82
0.01 96.30 0.87 88.75 5.03
0.10 95.80 0.85 85.88 4.13

lin
0.00 95.94 0.91 84.61 2.49
0.01 95.94 0.91 85.21 0.54
0.10 95.80 0.85 85.14 2.17

squared - 96.17 1.01 93.07 2.18

Scarselli et al. 2009 - - 95.86 0.64 91.86 1.12

19 25

Evolutions: MultiLayer Lagrangian GNNs

Even though the state transition function can be implemented by Deep Neural
Networks, the GNN is still shallow.
A multilayer version of our algorithm can be easily introduced by simply adding
the corresponding constraints
Label of hidden nodes are simply the states of the nodes of the layer below.
The new constraints add new variables (e.g. yi, zi, etc.)

�2

�3

�4

�5

�1

(a) A shallow GNN.
�2

�3

�4

�5

�1

�2

�3

�4

�5

�1

�2

�3

�4

�5

�1

(b) A deep GNN.

20 25

Evolutions: MultiLayer Lagrangian GNNs

The optimization problem is easily updated into:

minimize
∑
v∈S

L(gw(zv), tv)

subject to G(xv −
∑

(v,n)∈E
f0w(xn, lv, ln)) = 0, ∀ v ∈ V (3)

G(yv −
∑

(v,n)∈E
f1w(yn, xn, xv)) = 0, ∀ v ∈ V (4)

G(zv −
∑

(v,n)∈E
f2w(zn, yn, yv)) = 0, ∀ v ∈ V (5)

21 25

Experiments: graph classification benchmarks

Table: Test set classification average accuracies and standard deviations for
the graph classification benchmarks.

Datasets IMDB-B IMDB-M MUTAG PROT. PTC NCI1
graphs 1000 1500 188 1113 344 4110
classes 2 3 2 2 2 2
Avg # nodes 19.8 13.0 17.9 39.1 25.5 29.8

DCNN 49.1 33.5 67.0 61.3 56.6 62.6
PatchySan 71.0± 2.2 45.2± 2.8 92.6± 4.2 75.9± 2.8 60.0± 4.8 78.6± 1.9
DGCNN 70.0 47.8 85.8 75.5 58.6 74.4
AWL 74.5± 5.9 51.5± 3.6 87.9± 9.8 – – –
GIN 75.1± 5.1 52.3± 2.8 89.4± 5.6 76.2± 2.8 64.6± 7.0 82.7± 1.7
GNN 60.9± 5.7 41.1± 3.8 88.8± 11.5 76.4± 4.4 61.2± 8.5 51.5± 2.6
LP-GNN 71.2± 4.7 46.6± 3.7 87.7± 6.5 75.7± 4.5 61.7± 6.8 64.5± 2.2
LP-GNN-Multi* 76.2± 3.2 50.8± 2.0 89.4± 7.2 77.2± 3.9 67.9± 7.2 69.0± 1.7

22 25

Semisupervised Learning in Graph Domains

In supervised node classification tasks, all the nodes in the
training data needs to be labeled.
Simple extension to tackle the Semisupervised tasks. In particular,
by splitting the nodes into supervised and unsupervised, we can:

▶ On supervised nodes, enforce state transition constraints and the
objective function

▶ On unsupervised nodes, enforce state transition constraints only
This will allow to exploit the topological patterns of unsupervised
data to make state transition function converge also for
unsupervised nodes.

23 25

Semisupervised Learning in Graph Domains

24 25

Conclusions

GNN learning task casted as a constrained optimization problem
allows us to avoid the explicit computation of the fixed point
needed to encode the graph.
Jointly optimize the model weights and the state representation
without the need of separate phases.
Simplify the computational scheme of GNNs and allows us to
incorporate alternative strategies in the fixed point optimization
by the choice of the constraint function
The constraint-based scheme can be extended to all the other
methods proposed in the literature that exploit more
sophisticated architectures.

25 / 25

	The Graph Neural Network Model
	Lagrangian GNN
	Experiments

