

Function: Euclidean a' n variable: boolean

\n
$$
\begin{array}{ccccccccc}\n& \text{1: } \{x, y, 1\} & x \neq 0, 1 \} & & \text{2: } \{0, 1\} & & \text{3: } \{0, 1\} & & \text{4: } \{0, 1\} & & \text{5: } \{0, 0\} & & \text{6: } \{0, 0\} & & \text{7: } \{0, 0\} & & \text{8: } \{0, 0\} & & \text{1: } \{0, 0\} &
$$

 $\sqrt{3}$

 $\frac{3}{2}$

Λ λ λ χ χ \wedge

 $f(0,0) = 0$ $f(0,1)=1$ $X_{0}r$ $f(1,0) = 1$ $+$ (1,1) = 0

 $f(x,y) = x \mathfrak{I} y$ $f_{x_{M}}(x_{1}y) = x_{1}y_{1}y_{2}$

Escraitio

Dimostrane ch

 $4/$

Truth table	New and old notation(s)	Operator symbol \circ	Name(s)
0000	$\overline{0}$		Contradiction; falsehood; antilogy; constant 0
0001	$xy, x \wedge y, x \& y$	Λ	Conjunction; and
0010	$x \wedge \bar{y}$, $x \not\supset y$, $[x > y]$, $x \div y$	$\overline{\supset}$	Nonimplication; difference; but not
0011	\boldsymbol{x}		Left projection; first dictator
0100	$\bar{x} \wedge y$, $x \not\subset y$, $[x < y]$, $y \doteq x$	$\overline{\subset}$	Converse nonimplication; not but
0101	\boldsymbol{y}	R	Right projection; second dictator
0110	$x \oplus y$, $x \not\equiv y$, $x \hat{y}$	\oplus	Exclusive disjunction; nonequivalence; "xor"
0111	$x \vee y, x \mid y$	\vee	(Inclusive) disjunction; or; and/or
1000	$\bar{x} \wedge \bar{y}$, $\overline{x \vee y}$, $x \overline{\vee} y$, $x \downarrow y$	$\bar{\vee}$	Nondisjunction; joint denial; neither nor
1001	$x \equiv y, x \leftrightarrow y, x \Leftrightarrow y$	\equiv	Equivalence; if and only if; "iff"
1010	\bar{y} , $\neg y$, $!y$, $\sim y$	Ŕ	Right complementation
1011	$x \vee \overline{y}, x \subset y, x \Leftarrow y, [x \geq y], x^y$	\subset	Converse implication; if
1100	\bar{x} , $\neg x$, $\vert x$, $\sim x$	Ē.	Left complementation
1101	$\bar{x} \vee y, x \supset y, x \Rightarrow y, [x \leq y], y^x$	\supset	Implication; only if; if \dots then
1110	$\bar{x} \vee \bar{y}$, $\overline{x \wedge y}$, $x \bar{\wedge} y$, $x y$	$\overline{\wedge}$	Nonconjunction; not both and; "nand"
1111	1	Τ	Affirmation; validity; tautology; constant 1

Table 1 THE SIXTEEN LOGICAL OPERATIONS ON TWO VARIABLES

it by the truth table shown in Table 1, which states in particular that the implication is true when both *x* and *y* are false. Much of this early work has been lost, but there are passages in the works of Galen (2nd century A.D.) that refer to both inclusive and exclusive disjunction of propositions. See I. M. Bocheński, *Formale Logik* (1956), English translation by Ivo Thomas (1961), for an excellent survey of the development of logic from ancient times up to the 20th century.]

A function of two variables is often written $x \circ y$ instead of $f(x, y)$, using some appropriate operator symbol . Table 1 shows the sixteen operator symbols that we shall adopt for Boolean functions of two variables; for example, \perp symbolizes the function whose truth table is 0000, \wedge is the symbol for 0001, \overline{D} is the symbol for 0010, and so on. We have $x \perp y = 0$, $x \wedge y = xy$, $x \bar{y} = x \dot{-} y$, $x \perp y = x$, \ldots , $x \barwedge y = \bar{x} \vee \bar{y}$, $x \bar{y} = 1$.

Of course the operations in Table 1 aren't all of equal importance. For example, the first and last cases are trivial, since they have a constant value independent of *x* and *y*. Four of them are functions of *x* alone or *y* alone. We write \bar{x} for $1-x$, the *complement* of x .

The four operations whose truth table contains just a single 1 are easily expressed in terms of the AND operator \wedge , namely $x \wedge y$, $x \wedge \bar{y}$, $\bar{x} \wedge y$, $\bar{x} \wedge \bar{y}$. Those with three 1s are easily written in terms of the OR operator \vee , namely $x \vee y$, $x \vee \overline{y}$, $\overline{x} \vee y$, $\overline{x} \vee \overline{y}$. The basic functions $x \wedge y$ and $x \vee y$ have proved to be more useful in practice than their complemented or half-complemented cousins, although the NOR and NAND operations $x \overline{\vee} y = \overline{x} \wedge \overline{y}$ and $x \overline{\wedge} y = \overline{x} \vee \overline{y}$ are also of interest because they are easily implemented in transistor circuits.

$$
\begin{array}{lll}\n\text{Exial:} & \text{Var.} & \text{False} \\
\text{(a)} & (209) \text{V2} = (2 \text{ V2}) \text{ (9 V2)} \\
\text{(b)} & (\text{w0} \times \text{0y}) \text{ V2} = (\text{w12}) \text{ (9 V2)} \\
\text{(c)} & (\text{w0} \times \text{0y}) \text{ V2} = (\text{w12}) \text{ (9 V2)} \\
\text{(d)} & (\text{w0} \times \text{0y}) \text{ (19 V2)} = (\text{w12}) \text{ (9 V2)}\n\end{array}
$$

Flant						
Solubione	(5)	Isoso	saylice	(n	(b)	$<$ 00 = x
and $x \oplus y = x \oplus y \oplus x \oplus y$	$x \vee 1 = 1$					
200	$x \oplus y = x \oplus x \oplus y$	$x \vee 1 = 1$				
21	$1 = 1$					
31	$0 \oplus 1$					
4	$0 \oplus 1$					

 $\frac{5}{7}$

Analisi degli Algoritoni "Find the maximum" (Towere il massimus)

$$
\mathbf{a} \leftarrow \mathbf{b}
$$

$$
\begin{array}{rcl}\n\mathbf{w} & \mathbf{0.5} \rightarrow \boxed{4.1} \\
\mathbf{0.5} & \rightarrow \boxed{2.1} \\
\mathbf{0.5} & \rightarrow \mathbf{0.7}\n\end{array}
$$

 \mathbb{W}_{\bullet} \times \bullet , \times , \times \bullet , \times \bullet $n = 4$ 2.3 3.2 4.1 0.5

 065 g A = # vote de scambio il masino mis $A = 0$ (x $X_n = \max_{i \in \{1, \dots, n\}} X_i$) $max A = n-1$ ($\left(\begin{array}{cc} x & x_1 > x_2 > x_3 > ... > x_n \end{array} \right)$ $ave A = ?$

 $6)$

 hzz

A \bullet $1 2 3$ $\circled{3}$ 2 $\overline{1}$ $0 \leftarrow$ 1 2 1 3 s
s 201
 301
 301
 21 $\frac{7}{2}$ # septement dove A = 0 -> 2 # segurite done $A \cdot 1 \rightarrow 3$ $22 \rightarrow 1$ tore A ti sepon P_{n_k} = # septement of the A = k $rac{2}{6}$ $\frac{p}{30}$ = 2 P_{31} = 3 (probabilitai de A= k) = # nuncio di segneze son A= k = trie conjust # squere $\frac{p_{n}}{p_{n}} = \frac{p_{n}}{p}$ $n! = n(n-1) \cdots 3 \cdot 2 \cdot 1$ $1 \rceil \cdots \rceil$ $Pf(A=1)$ $n(n-1)(n-2)... 4 = n$ $E A = \sum_{\mathbf{h}} P_{\mathbf{h}\mathbf{k}} \cdot \frac{\mathbf{h}}{V}$ EA= P_{30} . 0 + P_{31} '1 + P_{32} '2 + 0 $=$ $\frac{2}{6}$. 0 $+$ $\frac{3}{6}$ '1 + 1. 2 = $\frac{1}{2}$ + $\frac{1}{3}$ = $\frac{3+2}{6}$ = $\frac{6}{6}$

 $\frac{1}{2}$