Threat of Adversarial Attacks on Deep Learning

Summary

- 1. General Observations
- 2. Attacks
- 3. Defenses
- 4. What we can do?

Why Adverarial attacks?

Is The Threat Real?

Road Sign Attack

Adversarial 3-D Object

...But also

Only Concerns Object Recognition?

Attacks on Generative Models

AutoEncoder Input (Adversarial) AutoEncoder Output

Attacks on RNN – LSTM (Houdini)

Groundtruth	 "The fact that a man can recite a poem does not show he remembers any previous occasion on which he has recited it or read it".
G-Voice – original example:	• "The fact that a man can decide a poem does not show he remembers any previous occasion on which he has work cited or read it."
G-Voice – adversarial example:	• "The fact that I can rest I'm just not sure that you heard there is any previous occasion I am at he has your side it or read it."

Attacks on Semantic Segmentation

Attacks on Deep Reinforcement Learning

Network Specific?

Good generalization capabilities

Adversarial examples often transfer well between different NNs

Allow many 'Black Box' attacks

Why Adversarial Examples exist?

Supposed Reasons

Structural reason: 'Linearity Hypothesis' (Goodfellow)

- Flatness of decision boundaries
- Low flexibility of the networks

Algorithmic reason: 'Evolutionary Stalling'

 Positive samples stop contributing to the network update once correctly classified There exists any effective defense?

Existing defense methods issues

Defenses are attack-specific

Counter-counter methods are possible

Attacks

Types of attacks

Knowledge on the network:

- Black Box attack
- White Box attack

Specificity of the attack:

- Image specific
- Universal attack

Types of attacks

Iterations:

- Single-step attack
- Iterative attack

Class targeted attack:

- Targeted
- Not-targeted

Attacks Score

Fooling Rate

Perturbation amount

(Time to attack)

Historical Evolution

White-Box Image Specific Single-Step Attacks

White-Box Image Specific Iterative Attacks

White-Box Universal Iterative Attacks

Black-Box attacks

Historical Evolution

White-Box Image Specific Single-Step Attacks

1) BOX-CONSTRAINED L-BFGS ATTACK

First adversarial attack

- "Intriguing properties of neural networks" (Szegedy 2014)
- Optimization problem:
 - $\blacktriangleright \min \left| |\rho| \right|_2 : C(I_c + \rho) = l_{target}$
 - $\blacktriangleright \min\{ ||\rho||_2 + \mathcal{L}(I_c + \rho, l_{target}) \}$

2) FGSM (Goodfellow)

Optimization problem:

- $\blacktriangleright \rho = \varepsilon * sign (\nabla J(\theta, I_C, l))$
- It allows fast computation
- Exploits the linearity of the model
- Introduced the adversarial training idea

Historical Evolution

White-Box Image Specific Single-Step Attacks

White-Box Image Specific Iterative Attacks

3) BIM & ILCM

Optimization problem:

- $\blacktriangleright I_{\rho}^{i+1} = Clip_{\varepsilon} \{ I_{\rho}^{i} + \alpha * sign (\nabla J(\theta, I_{\rho}^{i}, l) \}$
- $\blacktriangleright BIM: l untargeted attack$
- ILCM: *l_{target}* targeted attack to the least likely class
- More computationally expensive

- Algorithm based on the saliency map
- Objective: minimize the number of pixels modified
- Nice algorithm to determine strength of defense algorithm

y: deer

y: truck

 \hat{y} : horse

 \hat{y} : frog

 \hat{y} : horse

 \hat{y} : dog

Other Attacks

5) Deep Fool

- Iteratively push an image to the nearest decision boundary
- Untargeted attack
- Produce the Minimal Norm perturbation

6) C&W Attacks (Carlini & Wagner)

- ► 3 different attacks
- Current SOA of white box attacks
- Most defense algorithms fail against C&W

Historical Evolution

White-Box Image Specific Single-Step Attacks

White-Box Image Specific Iterative Attacks

White-Box **Universal** Iterative Attacks

7) Universal Adversarial Perturbation

- Fool a network on "any" image with the same perturbation
- $\blacktriangleright P(C(I_c) \neq C(I_c + \rho)) \ge \delta : ||\rho|| \le \xi$
- Strategy similar to Deep Fool

Original

"rapeseed" 99.9% confidence

"cardigan" 89.7% confidence

81.8% confidence "mask"

"jay" 99.9% confidence

Historical Evolution

White-Box Image Specific Single-Step Attacks

White-Box Image Specific Iterative Attacks

White-Box Universal Iterative Attacks

Black-Box attacks

8) One-Pixel Attack

(Airplane)

Dog (Ship)

Bird (Airplane)

Horse

Horse (Cat)

Ship (Truck)

Dog (Horse)

Ship (Truck)

Only one pixel of the image is perturbed

- Evolutionary algorithm
- No need to access to internal parameters or loss of the net (BlackBox attack)

Deer (Dog)

Frog (Dog)

Frog (Truck)

9) UPSET, ANGRI

- Residual Generating Network R():
 - ▶ $I_p = \max(\min(sR(t) + I_c, 1), -1): C(I_p) = l_target$
 - Generate n perturbation $I_{p,i}$ one for each class *i*

- ANGRI
 - Find an Image-Specific perturbation Ip

UPSET

Find a Universal Perturbation I_p

Adversarial Attack Framework?

FOOLBOX
Defenses

Types of Defense algorithms

Modified input data	• Defense
Modifying the network	DefenseDetection
Network add-ons	DefenseDetection

Requirements

LOW IMPACT ON THE ARCHITECTURE MAINTAIN SPEED OF THE NETWORK MAINTAIN ACCURACY ON CLEAN DATA CORRECTLY CLASSIFY ONLY ADVERSARIAL EXAMPLES CLOSE TO THE REAL ONES

Modified input data

Defense algorithms

- 1. Brute Force Adversarial Training
- 2. Data Compression as a defense
 - 1. JPEG compression
 - 2. Also PCA/DCT
- 3. Foveation based defense
- 4. Also data augmentation (less effective)

Modifying the network

Defense Algorithms

- 1. Defense Distillation
- 2. Deep Contractive Network
- 3. Gradient Regularization
 - 1. Also Parseval Networks
- 4. Biologically Inspired Network

Detection-Only Approach

Network addons

Defense Algorithms

- Defense Against Universal Perturbation Detector + PRN
- GAN-based defense
 Ad-hoc brute force learning

Detection-Only Approach

Feature squeezing Reduce pixel depth

- Perform spatial smoothing
- Classification Comparison of original and squeezed images

Magnet

External model learn data manifold

Reform near data and exclude far images

Is there anything we could do?

LOC Adversarial Defense

Constraints in a hierarchical multilabel context

Constraint Based Defenses

Attack Detector:

- Constraint satisfaction
- Robust Defense:
 - Constrained
 Learning
 - Collective
 Classification

Dog (Horse)

Horse (Cat)

Automobile (Dog)

First Results

Conclusions

- ► Is The Threat Real? YES
- Does It Concern Only Computer Vision? NO
- Are Attacks Network Specific? NO
- Why Adversarial Examples Exists? Unknown
- There exists effective defense yet? NO
- Is there anything we could do?

Thank you for your attention