

Deep Learning in Natural Language Processing

02/12/2019

Andrea Zugarini, PhD Student Marco Maggini, Advisor

Outline

- □ Introduction
- Word Representations
- Language Models
- Recurrent Neural Networks

Natural Language Processing (NLP) is the field in between computer science, statistics and linguistics.

Goal: Design of algorithms that automatically understand human language in order to perform some tasks. E.g.: Spell checking, translation etc...

Understanding the **meaning** of language is a challenging problem!

NLP Problems and Applications

Syntactic Analysis

Pos-tagging, Chunking

Semantic Interpretation

Sentiment Analysis, Named Entity Recognition, Entity and Relation Extraction, Word Sense Disambiguation, ...

Discourse Processing

Language Modelling, Machine Translation, Text Summarization, ... Growing **complexity** of such applications!

Rule-based or statistical

approaches are **not adequate** to face the complexity of most of these challenges.

We need a different perspective!

Alternatively, we could try to let computers learn directly from real data !!!

Machine Learning (ML) methods exploit **examples** to learn how to solve a problem. The goal is to assign a **label** to each example. An example is represented into the computer with **features**. If we know the labels for some data, we can do **supervised learning**.

Many **NLP** problems can be formulated as **classification** problems.

Warning: Features are usually real numbers, while language is inherently **symbolic**! We need to handcraft ad-hoc solutions for each task.

An Example: Sentiment Analysis

Goal: Decide whether a text is expressing a **positive** or **negative** opinion about something.

Plenty of useful applications, because people's feedbacks are important: tripadvisor, e-commerce, movies....

It is a typical **binary** classification problem!

Naïve approach (see SentiWordNet):

- Define two sets of words with positive (*love*, *like*, *appreciated* ...) and negative (*hate*, *lame*, *bad* ...) meaning, respectively
- **Count** how many times each word in the sets appears in a text (our features)
- Feed a classifier with these features and make it learn.

An Example: Sentiment Analysis

Review 1

My boyfriend and I went to watch The Guardian. At first I didn't want to watch it, but I loved the movie. It was definitely the best movie I have seen in sometime. I would suggest this movie for anyone to see. The ending broke my heart but I know why he did it.

positive

Review 2

For years, I've been a big fan of Park's work and "Old boy" is one of my all-times favorite. With lots of expectation I rented this movie, only to find the worst movie I've watched in awhile. It's not a proper horror movie; there's no suspense in it and even the "light" part is so lame, that I didn't know whether to laugh or cry. For me, an idol has fallen. If you loved movies like "Old boy", the Mr & Lady "Vengeance", don't waste your time, the film's not worth it.

negative

Looks easy, right?

An Example: Sentiment Analysis

Review 1

My boyfriend and I went to watch The Guardian. At first I didn't want to watch it, but I **loved** the movie. It was definitely the **best** movie I have seen in sometime. I would suggest this movie for anyone to see. The ending **broke my heart** but I know why he did it.

positive

negative

Review 2

For years, I've been a **big fan** of Park's work and "Old boy" is one of my all-times favorite. With lots of expectation I rented this movie, only to find the **worst** movie I've watched in awhile. It's not a proper horror movie; there's no suspense in it and even the "light" part is so **lame**, that I didn't know whether to laugh or cry. For me, an idol has fallen. If you **loved** movies like "Old boy", the Mr & Lady "Vengeance", don't waste your time, the film's not worth it.

Not for a computer, positive words appear in negative reviews and viceversa!

What is Deep Learning?

□ Is a subfield of Machine Learning!!!

- In contrast to standard ML, deep learning models automatically learn good features (or representations) from raw input data.
- Neural Networks are the dominant class of models in Deep Learning.
- How can automatically learn meaningful representation of text in NLP?

Words Representations

Words Representations

Words are **discrete symbols**.

Machine-Learning algorithms cannot process symbolic information as it is.

Same problem of any **categorical variable**, e.g.:

- $\square Blood type of a person: \{A, B, AB, O\}$
- □ Color of a flower: {*yellow, blue, white, purple, ...*}
- □ Country of citizenship: {*Italy, France, USA, ...*}

So, given the **set** of possible values S of the feature, the solution is to define an assignment function $H: S \to \mathbb{R}^d$ to map each symbol into a **real vector**.

One-hot Encoding

Without any other assumption, best way is to assign symbols to **one-hot** vectors, such that all the nominal values are **orthogonal**.

In Blood type example:

A: [1 0 0 0] B: [0 1 0 0] AB: [0 0 1 0] O: [0 0 0 1]

Warning: the length *d* of the representation grows linearly with the cardinality of *S*.

In NLP, words are mapped to one-hot vectors with the size of the vocabulary.

One-hot Encoding

Given a vocabulary of 5 words *V*= {*hotel, queen, tennis, king, motel*}:

hotel: [1 0 0 0 0] *queen*: [0 1 0 0 0] *tennis*: [0 0 1 0 0] *king*: [0 0 0 1 0] *motel*: [0 0 0 0 1]

There is no notion of **similarity** between one-hot vectors!

queen: [0 **1** 0 0 0] *king*: [0 0 0 **1** 0] *hotel*: [**1** 0 0 0 0]

Word Embeddings

The idea is to assign each word to a **dense vector** with $d \ll |V|$, chosen such that similar vectors will be associated to words with similar meaning. We must define an embedding matrix of size $|V| \times d$. Each row is the embedding of a single word.

Embedding Matrix

Word Embeddings Word2vec

There are literally hundreds of methods to create dense vectors, however most of them are based on *Word2vec* framework (Mikolov et al. 2013).

Intuitive idea

"You shall know a word by the company it keeps" (J. R. Firth 1957)

In other words, a **word's meaning** is given by the words in the **context** where it usually appears.

One of the most successful ideas in Natural Language Processing! Embeddings are learnt in an **unsupervised** way.

Word Embeddings

Word2vec

- Consider a large corpus of text (billions of words).
- Define a vocabulary of words and associate each word to a row of the embedding matrix initialized at random.
- Go through each position in the text, which has a center word and a context around it (fixed window). Two conceptually equivalent methods:
 - (**CBOW**) Estimate the probability of the center word given its context.
 - (**SKIPGRAM**) Estimate the probability of context given the center word.
- Adjust word vectors to maximize the probability.

Word Embeddings

Issues

Results are impressive, but keep in mind that there are still open points:

- Multi-sense words. There are words with multiple senses. E.g. bank: "Cook it right on the bank of the river"
 "My savings are stored in the bank downtown"
- **Fixed size** vocabulary, i.e. new words are not learned
- Out Of Vocabulary words are represented with the same dense vector.
- □ No information about sub-word structure, so **morphology** is completely unexploited.

Possible solutions:

- Multi-sense word embeddings
- Character-based word representations

However, **Word2vec** embeddings work pretty well for common tasks such as Language Modeling.

Language Modeling

Language Modeling

Formally, a sentence of words w_1, \ldots, w_n is characterized by a **probability distribution**:

$$p(w_1,\ldots,w_n) = p(w_1)p(w_2|w_1)\ldots p(w_n|w_1,\ldots,w_{n-1})$$

where, the equivalence comes directly from the chain rule.

Language Modeling is considered a benchmark to evaluate progresses on language understanding.

LMs are involved on several NLP tasks:

- Language Generation
- Representation Learning
- Speech Recognition
- Spell Correction
- Machine Translation

Some Examples

Google

how to			ļ	
how to get away	with a murderer			
how to get away	with a murderer 5			
how to save a life	e			
how to save a life	e testo			
how to				
how to basic				
how to train you	r dragon			
how to write an e				
how to draw				
how to not summon a demon lord				
	Cerca con Google	Mi sento fortunato		

N-gram Language Models

How to estimate $p(w_t | w_1, \dots, w_{t-1})$? Just learn it from **observations**!

- 1) Get a **huge** collection of textual documents.
- 2) Retrieve the set \mathbf{V} of all the words in the corpora, known as Vocabulary.
- 3) For **any** sub-sequence of words, **estimate** $p(w_t|w_1, \ldots, w_{t-1})$ by counting the number of times w_t appears in context $w_1 \ldots w_{t-1}$ over the number of times the context appeared overall, i.e.:

$$p(w_t|w_1,\ldots,w_{t-1}) = rac{\#(w_1,\ldots,w_{t-1},w_t)}{\sum_{w_i\in V}\#(w_1,\ldots,w_{t-1},w_i)}$$

Easy, right?

N-gram Language Models

Considering **all the possible sub-sequences** is infeasible in terms of computation and memory.

N-gram models approximate $p(w_t | w_1, \dots, w_{t-1})$ assuming:

$$p(w_t | w_1, \dots, w_{t-1}) pprox p(w_t | w_{t-N+1}, \dots, w_{t-1})$$

When **N** increases, approximation is more precise, **but** complexity grows exponentially.

Viceversa, when **N=1**, uni-gram models requires few resources but performances are poors.

Bi-grams are usually a good tradeoff.

N-gram Language Models Limitations

- N-gram models do not generalize to unseen word sequences, that is partially alleviated by smoothing techniques. The longer the sequence, the higher the probability to discover an unseen one.
- Despite the choice of N, it will always be bounded.
- The exponential complexity of the model limits N to be rather small (usually 2 or 3) that leads to not good enough performances.

How about using a *Machine-Learning model*?

Neural Language Model

Fixed Window (Bengio et al. 03)

Neural Networks require a **fixed-length** input. Hence, we need to set a window of words with length **N**.

Concatenated word embeddings of the last **N** words are the input of an MLP with one hidden layer.

Advantages over N-gram models:

- Neural networks have better generalization capabilities => NO SMOOTHING required.
- □ Model size increases **linearly** O(N), not exponentially O(exp(N)).

Still open problems:

- □ History length is **fixed**.
- Weights are **not shared** across the window!

Neural Language Model

Fixed Window (Bengio et al. 03)

$$\hat{y} = softmax(Uh+b_2) \! \in \mathbb{R}^{|V|}$$

$$h=\sigma(We+b_1)$$

$$e=[e^{(t-N)},\ldots,e^{(t-1)}]$$

Case of window size **N=3.** Only the last 3 words are taken into account.

Recurrent Neural Networks

Recurrent Neural Networks

Feedforward networks just define a *mapping* between inputs to outputs. This behaviour does not depend on the order in which inputs are presented. Time is then not considered, that's why feedforward networks are said to be **static** or **stationary**.

$$Y = f(X)$$

Recurrent Neural Networks (RNN) are a family of architectures that **extend** standard feedforward neural networks to process input sequences, in principle, of **any length**. They are also known as **dynamic** or **non-stationary** networks. Patterns are sequences of vectors.

$$Y(t) = f(X(t))$$

Recurrent Neural Networks

Feedforward Networks

- □ It models static systems.
- Good for traditional classification and regression tasks.

Recurrent Networks

- Whenever there is a temporal dynamic on the patterns.
- Good for Time series, Speech Recognition, Natural Language Processing, etc...

Recurrent Neural Networks

Two functions **f** and **g**, compute the hidden state and the output of the network, respectively.

A pattern x is a sequence of vectors:

$$x = \{x_1, \dots, x_T\}$$
The hidden state has **feedback connections** that passes information
about the past to the next input.

$$h_t = f(W_h \cdot h_{t-1} + W \cdot x_t + b_1)$$
Output can be produced at any step or only at the end of the sequence.

$$y_t = g(U \cdot h_t + b_2)$$

Learning in Recurrent Networks Backpropagation Through Time

How to train RNNs ?

Feedback connections creates **loops**, that are a problem since the update of a weight depends on itself at previous time step.

Solution: a recurrent neural network processing a sequence of length *T* is **equivalent** to a feedforward network obtained by the **unfolding** of the RNN *T* times.

The unfolded network is trained with standard **backpropagation** with **weight sharing**.

Learning in Recurrent Networks

Unfolding through time

Learning in Recurrent Networks Vanishing Gradient Problem

Sequences can be much longer than the one seen in the examples.

When the sequences are too long gradients steps tends to **vanish**, because the squashing functions have gradient always < 1. So learning **long-term dependencies** between inputs of a sequence is difficult (Bengio et al. 1994).

Intuitive Idea

RNNs have problems to remember information coming from very **old past**.

Learning in Recurrent Networks

Vanishing Gradient Problem

There are ways to **alleviate** this issue:

- Use of **ReLu** activation functions, but there is the risk of gradient exploding (opposite problem).
- Good initialization of the weights (e.g. **Xavier**), always a best practice.
- Other variants of recurrent networks Long-Short Term Memory (LSTM) networks, Gated Recurrent Units (GRU), have been designed precisely to mitigate the problem.

Language Modeling Comparison

	Model	Perplexity
<i>n</i> -gram model — Increasingly complex RNNs	→ Interpolated Kneser-Ney 5-gram (Chelba et al., 2013)	67.6
	RNN-1024 + MaxEnt 9-gram (Chelba et al., 2013)	51.3
	RNN-2048 + BlackOut sampling (Ji et al., 2015)	68.3
	Sparse Non-negative Matrix factorization (Shazeer et al., 2015)	52.9
	LSTM-2048 (Jozefowicz et al., 2016)	43.7
	2-layer LSTM-8192 (Jozefowicz et al., 2016)	30
	Ours small (LSTM-2048)	43.9
	Ours large (2-layer LSTM-2048)	39.8

Perplexity improves (lower is better)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

References

- Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model. *Journal of machine learning research*, 2003.
- Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrrey Dean. Efficient estimation of word representations in vector space. *arXiv preprint* 2013.
- Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. *IEEE Transactions on Neural Networks*, 1994.
- S Hochreiter, J Schmidhuber *Long short-term memory.*
- Material on Deep Learning in NLP, <u>http://web.stanford.edu/class/cs224n/syllabus.html</u>.