
Deep Learning in Natural Language

Processing

02/12/2019

Andrea Zugarini, PhD Student

Marco Maggini, Advisor

Outline

❏ Introduction

❏ Word Representations

❏ Language Models

❏ Recurrent Neural Networks

Introduction

❑ Natural Language Processing (NLP) is the field in between computer science,
statistics and linguistics.

❑ Goal: Design of algorithms that automatically understand human language
in order to perform some tasks. E.g.:

Spell checking, translation etc…

❑ Understanding the meaning of language is a challenging problem!

NLP Problems and Applications

Growing complexity of such
applications!

Rule-based or statistical
approaches are not adequate to
face the complexity of most of
these challenges.

We need a different perspective!

❑ Syntactic Analysis

❑ Pos-tagging, Chunking

❑ Semantic Interpretation

❑ Sentiment Analysis, Named Entity
Recognition, Entity and Relation Extraction,
Word Sense Disambiguation, ...

❑ Discourse Processing

❑ Language Modelling, Machine Translation,
Text Summarization, ...

Machine Learning and NLP

Alternatively, we could try to let computers learn directly from real data !!!

Machine Learning (ML) methods exploit examples to learn how to solve a problem.

The goal is to assign a label to each example.

An example is represented into the computer with features.

If we know the labels for some data, we can do supervised learning.

Many NLP problems can be formulated as classification problems.

Warning: Features are usually real numbers, while language is inherently symbolic! We
need to handcraft ad-hoc solutions for each task.

Machine Learning and NLP
An Example: Sentiment Analysis

Goal: Decide whether a text is expressing a positive or negative opinion about something.

Plenty of useful applications, because people’s feedbacks are important:

tripadvisor, e-commerce, movies….

It is a typical binary classification problem!

Naïve approach (see SentiWordNet):

❑ Define two sets of words with positive (love, like, appreciated …) and negative (hate, lame, bad …)
meaning, respectively

❑ Count how many times each word in the sets appears in a text (our features)

❑ Feed a classifier with these features and make it learn.

Machine Learning and NLP
An Example: Sentiment Analysis

Review 1

My boyfriend and I went to watch The Guardian.At first I didn't want to watch it, but I loved
the movie. It was definitely the best movie I have seen in sometime. I would suggest this
movie for anyone to see. The ending broke my heart but I know why he did it.

Review 2

For years, I've been a big fan of Park's work and "Old boy" is one of my all-times favorite.
With lots of expectation I rented this movie, only to find the worst movie I've watched in
awhile. It's not a proper horror movie; there's no suspense in it and even the "light" part is so
lame, that I didn't know whether to laugh or cry. For me, an idol has fallen. If you loved
movies like "Old boy", the Mr & Lady "Vengeance" , don't waste your time, the film's not
worth it.

Looks easy, right?

positive

negative

Machine Learning and NLP
An Example: Sentiment Analysis

Review 1

My boyfriend and I went to watch The Guardian.At first I didn't want to watch it, but I loved
the movie. It was definitely the best movie I have seen in sometime. I would suggest this
movie for anyone to see. The ending broke my heart but I know why he did it.

Review 2

For years, I've been a big fan of Park's work and "Old boy" is one of my all-times favorite.
With lots of expectation I rented this movie, only to find the worst movie I've watched in
awhile. It's not a proper horror movie; there's no suspense in it and even the "light" part is so
lame, that I didn't know whether to laugh or cry. For me, an idol has fallen. If you loved
movies like "Old boy", the Mr & Lady "Vengeance" , don't waste your time, the film's not
worth it.

Not for a computer, positive words appear in negative reviews and viceversa!

positive

negative

What is Deep Learning?

❑ Is a subfield of Machine Learning!!!

❑ In contrast to standard ML, deep
learning models automatically learn good
features (or representations) from raw
input data.

❑ Neural Networks are the dominant
class of models in Deep Learning.

❑ How can automatically learn meaningful
representation of text in NLP?

Words Representations

Words Representations

Words are discrete symbols.

Machine-Learning algorithms cannot process symbolic information as it is.

Same problem of any categorical variable, e.g.:

❏ Blood type of a person: {A, B, AB, O}
❏ Color of a flower: {yellow, blue, white, purple, ...}
❏ Country of citizenship: {Italy, France, USA, ...}

So, given the set of possible values of the feature, the solution is to define an
assignment function to map each symbol into a real vector.

One-hot Encoding

Without any other assumption, best way is to assign symbols to one-hot vectors,
such that all the nominal values are orthogonal.

In Blood type example:
A: [1 0 0 0]
B: [0 1 0 0]
AB: [0 0 1 0]
O: [0 0 0 1]

Warning: the length d of the representation grows linearly with the
cardinality of S.

In NLP, words are mapped to one-hot vectors with the size of the vocabulary.

One-hot Encoding

Given a vocabulary of 5 words V= {hotel, queen, tennis, king, motel}:

hotel: [1 0 0 0 0]
queen: [0 1 0 0 0]
tennis: [0 0 1 0 0]
king: [0 0 0 1 0]

motel: [0 0 0 0 1]

There is no notion of similarity between one-hot vectors!

queen: [0 1 0 0 0]
king: [0 0 0 1 0]
hotel: [1 0 0 0 0]

Word Embeddings

The idea is to assign each word to a dense vector with , chosen such
that similar vectors will be associated to words with similar meaning.
We must define an embedding matrix of size .
Each row is the embedding of a single word.

0.89 -0.52 -0.11 0.09 0.27

0.28 0.10 0.32 -0.90 0.41

-0.64 -0.01 0.95 0.12 -0.41

0.22 0.15 0.51 -0.83 0.43

0.91 -0.55 -0.2 0.16 0.32

queen

≈

king

Embedding Matrix

Word Embeddings
Word2vec

There are literally hundreds of methods to create dense vectors, however most of
them are based on Word2vec framework (Mikolov et al. 2013).

Intuitive idea

“You shall know a word by the company it keeps” (J. R. Firth 1957)

In other words, a word’s meaning is given by the words in the context where it
usually appears.

One of the most successful ideas in Natural Language Processing! Embeddings are
learnt in an unsupervised way.

Word Embeddings
Word2vec

❏ Consider a large corpus of text (billions of words).

❏ Define a vocabulary of words and associate each word to a row of the embedding

matrix initialized at random.

❏ Go through each position in the text, which has a center word and a context

around it (fixed window). Two conceptually equivalent methods:

❏ (CBOW) Estimate the probability of the center word given its context.

❏ (SKIPGRAM) Estimate the probability of context given the center word.

❏ Adjust word vectors to maximize

the probability.

Word Embeddings
Issues

Results are impressive, but keep in mind that there are still open points:
❏ Multi-sense words. There are words with multiple senses. E.g. bank:

“Cook it right on the bank of the river”
“My savings are stored in the bank downtown”

❏ Fixed size vocabulary, i.e. new words are not learned
❏ Out Of Vocabulary words are represented with the same dense vector.
❏ No information about sub-word structure, so morphology is completely unexploited.

Possible solutions:
❏ Multi-sense word embeddings
❏ Character-based word representations

However, Word2vec embeddings work pretty well for common tasks such as Language
Modeling.

Language Modeling

Language Modeling

Language Modelling is the problem of predicting what word comes next

I would like to eat ____

Formally, a sentence of words is characterized by a probability
distribution:

where, the equivalence comes directly from the chain rule.

pizza

sushi

Thai

Motivation

Language Modeling is considered a benchmark to evaluate progresses on
language understanding.

LMs are involved on several NLP tasks:

○ Language Generation

○ Representation Learning

○ Speech Recognition

○ Spell Correction

○ Machine Translation

○ ….

Some Examples

N-gram Language Models

How to estimate ? Just learn it from observations!

1) Get a huge collection of textual documents.

2) Retrieve the set V of all the words in the corpora, known as Vocabulary.

3) For any sub-sequence of words, estimate by

counting the number of times appears in context over

the number of times the context appeared overall, i.e.:

Easy, right?

N-gram Language Models

Considering all the possible sub-sequences is infeasible in terms of computation
and memory.

N-gram models approximate assuming:

When N increases, approximation is more precise, but complexity grows exponentially.

Viceversa, when N=1, uni-gram models requires few resources but performances are
poors.

Bi-grams are usually a good tradeoff.

N-gram Language Models
Limitations

❏ N-gram models do not generalize to unseen word sequences, that is
partially alleviated by smoothing techniques. The longer the sequence, the
higher the probability to discover an unseen one.

❏ Despite the choice of N, it will always be bounded.

❏ The exponential complexity of the model limits N to be rather small (usually 2
or 3) that leads to not good enough performances.

How about using a Machine-Learning model ?

Neural Language Model
Fixed Window (Bengio et al. 03)

Neural Networks require a fixed-length input. Hence, we need to set a window of words
with length N.

Concatenated word embeddings of the last N words are the input of an MLP with
one hidden layer.

Advantages over N-gram models:
❏ Neural networks have better generalization capabilities => NO SMOOTHING

required.
❏ Model size increases linearly O(N), not exponentially O(exp(N)).

Still open problems:
❏ History length is fixed.
❏ Weights are not shared across the window!

Neural Language Model
Fixed Window (Bengio et al. 03)

Case of window size N=3. Only the last 3 words

are taken into account.
I will watch a

Recurrent Neural

Networks

Recurrent Neural Networks

Feedforward networks just define a mapping between inputs to outputs. This behaviour
does not depend on the order in which inputs are presented. Time is then not
considered, that’s why feedforward networks are said to be static or stationary.

Recurrent Neural Networks (RNN) are a family of architectures that extend standard
feedforward neural networks to process input sequences, in principle, of any length.
They are also known as dynamic or non-stationary networks. Patterns are sequences
of vectors.

Recurrent Neural Networks

Feedforward Networks

❏ It models static systems.
❏ Good for traditional classification

and regression tasks.

Recurrent Networks

❏ Whenever there is a temporal
dynamic on the patterns.

❏ Good for Time series, Speech
Recognition,Natural Language
Processing, etc...

Recurrent Neural Networks

Two functions f and g, compute the hidden state and the output of the
network, respectively.

A pattern is a sequence of vectors:

The hidden state has feedback connections that passes information
about the past to the next input.

Output can be produced at any step or only at the end of the sequence.

Learning in Recurrent Networks
Backpropagation Through Time

How to train RNNs ?

Feedback connections creates loops, that are a problem since the update of a weight
depends on itself at previous time step.

Solution: a recurrent neural network processing a sequence of length T is
equivalent to a feedforward network obtained by the unfolding of the RNN T times.

The unfolded network is trained with standard backpropagation with weight
sharing.

Learning in Recurrent Networks
Unfolding through time

I will watch a

Loss

Function

Learning in Recurrent Networks
Vanishing Gradient Problem

Sequences can be much longer than the one seen in the examples.

When the sequences are too long gradients steps tends to vanish, because the
squashing functions have gradient always < 1.
So learning long-term dependencies between inputs of a sequence is difficult
(Bengio et al. 1994).

Intuitive Idea
RNNs have problems to remember information coming from very old past.

Learning in Recurrent Networks
Vanishing Gradient Problem

There are ways to alleviate this issue:

❏ Use of ReLu activation functions, but there is the risk of gradient exploding

(opposite problem).

❏ Good initialization of the weights (e.g. Xavier), always a best practice.

❏ Other variants of recurrent networks Long-Short Term Memory (LSTM) networks,

Gated Recurrent Units (GRU), have been designed precisely to mitigate the

problem.

RNN Language Model

I will watch a

RNN Language Model

I will watch a

RNN Language Model

I will watch a

RNN Language Model

I will watch a

Language Modeling
Comparison

References

● Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. Journal of machine learning research,
2003.

● Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint 2013.

● Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 1994.

● S Hochreiter, J Schmidhuber Long short-term memory.

● Material on Deep Learning in NLP,
http://web.stanford.edu/class/cs224n/syllabus.html .

http://web.stanford.edu/class/cs224n/syllabus.html

