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Information Extraction

Text is a huge source of information!

Information Extraction (IE) is one of the most important topics
in NLP, and it is about extracting structured information from
unstructured text (documents).

Goal: align textual spans to a Knowledge Base KB.

KBs typically store factual data into a triple-based ontology.
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Knowledge Base
Triple-based

In its simplest version, a KB stores a fact as a triple of two
entities and a relation: (ei, rk, ej).

Often, both entities and relations may belong to a type of the
ontology.

A structured representation of the information it is easier to handle
automatically than plain text, allowing efficient storing and
retrieval.

A knowledge base can be represented with a directed graph, where
entities are nodes and relations are edges.
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Knowledge Base
Triple-based

Information Extraction has to align textual spans of entities and
relation to their respective nodes and edges in the KB.
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Knowledge Base
Triple-based

Textual spans are referred as mentions.
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Knowledge Base
Triple-based

An entity is a unique instance of something in the real world.

The same entity may be referred by multiple mentions,
coreferences included.

Problem related to Named Entity Recognition.
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Knowledge Base
Triple-based

A relation is a property that connects two (or more) entities.

Challenging problem: there are many ways to express the same
relations.

Very similar to Relation Extraction.
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Entity and Relation Extraction

Can plain deep learning techniques be applied for Entity linking
and Relation Extraction? Yes, however:

I End-to-end approaches (encoder-decoder) are very good at
mapping text into new text, but they do not build any
concrete understanding model

I What does “understanding text” mean?

Understanding: mapping text onto a structured (factual)
knowledge base (Entity Linking)

Text Streams: we have to incrementally build and update the
knowledge while we process a text stream!
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Problem Setting

I We consider a continuous stream of text

I Groups of sentences organized into small stories about a
(not-known-in-advance) set of actors/objects - m mentions
and n entities/relations

I The narration is discontinuous whenever a new story begins

Challenges
KB construction, Online Learning, Entity Discovery, Entity Linking,
Multiple Stories
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Problem Setting
An Example

[Story A]
Clyde Radcliffe went to the office.
The new office is located in Sacramento.
A lot of people want to talk to Clyde.
He is a famous manager.
[Story B]
Clyde is chasing mice.
They hide behind the fridge.

[Story A]
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The new office is located in Sacramento.
A lot of people want to talk to Clyde.
He is a famous manager.
[Story B]
Clyde is chasing mice.
They hide behind the fridge.

1

2

6

7

2

1

Clyde Radcliffe

Clyde

the office

The new office

mice

They

He

is chasing

went to

9

3

5

4

8

(a)

(b)

3

10

11

SAILab, Dec 5th - 2019 Entity and Relation Extraction (10)



Architecture
Overview

The system is the composition of multiple modules.

I Mention Detector: Segment each sentence in
non-overlapping text fragments.

I Encoder: textual mention and its context are encoded into a
vectorial representation.

I Candidate Generator: given an input mention z, the
candidate generator implements memory components that are
used to generate a list of compatible candidates from the KB.

I Disambiguator: Based on the mention context, the
disambiguator is responsible of determining which candidate is
the most likely.
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Architecture
In detail overview
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Architecture
Segmentation
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Architecture
Segmentation

Focus the attention only on relevant text spans (mentions to
entities or relations). How?

1. Supervised learning using syntax-based generated labels

2. Pre-trained character-based model to spot both entities and
relations

3. Post processing of predictions to adjust misplaced markers
(unclosed elements etc...)
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Architecture
Mention and Context Encoders
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Architecture
Mention and Context Encoders

We are given a sequence of segments, that are mentions to entities
or relations

I Represent segments: each segment zi is processed as a sequence of
characters and it is embedded into ei

ei = enc(zi) =
[−−−−→
eRNN(ci,1, . . . , ci,|zi|),

←−−−−
eRNN(ci,1, . . . , ci,|zi|)

]
I Represent contexts: the context around zi is embedded into the

representation êi (that does not include zi)

êi = enc(zi|s− zi) =
[−−−−→
êRNN(e1, . . . , ei−1),

←−−−−
êRNN(ei+1, . . . , en)

]
Unsupervised Learning in a encoding-decoding scheme as (CBOW)
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Encodings
Learning Example

Sketch of mention and context encoding architecture while
processing the sentence “The cat is sleepy” with target word cat
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Architecture
Memory
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Architecture
Memory

Our Knowledge Base is organized in 4 memory components

1. H is the set of mentions (raw text)

2. E is the matrix of the embeddings of each mention

3. T buffers the last disambiguated instances, resets at the
beginning of a story

4. M is a matrix where is row is associated to a mention z ∈ H
and σ(MH(z)) provides the activation scores of currently
known instances

Anytime a new element is encountered the KB is updated
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Architecture
Hypoteses Formulation
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Architecture
Hypoteses Formulation

Given a mention z and its embedding e at time t, three hypotheses
are formulated

I Mention-based: p(z) = σ(MH(z))

I Embedding-based:

p(e) =

([
cos(e, Ei) + 1∑m
j=1 cos(e, Ej) +m

]m
i=1

)′
· σ(M)

I Time-based:

p(t) =
[u(i, T )]ni=1

max [u(j, T )]nj=1

Ensembler

p = (1− γ) ·
(
p(z) + (1− p(z))p(e)

)
+ γ · p(t)
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Architecture
Disambiguator
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Architecture
Disambiguator

Hypotheses outputs potential candidates, disambiguation resolves
ambiguities by selecting the correct one(s). How?

It looks at the context to find most compatible mention wrt n
disambiguation units

I Disambiguation Unit: given the context ê, predicts the activation of the
instance (Predictors have a local support around κ centres)

di(ê) =
1

2
+

1

2

κ
max
j=1

cos(ê, ŵij)

Final output of the system is o

o = δ(p > τr) · (η · p+ (1− η) · d)
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Learning

Online Learning process accordingly to either supervision or self
learning

When no supervision is provided, we distinguish among three
cases:

i. maxo ≥ τa : recognized some instances

ii. maxp > τr ∧maxo < τa : uncertainty
iii. maxp ≤ τr : unknown instance

Learnable parameters: M , disambiguation units d and γ
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Experimental Environment
Simple Story Dataset

I Collection of 10k sentences organized in 564 stories

I A story is a list of not repeated facts mostly focussed on a
certain entity, also called main entity

I 130 entity and 27 relation instances, belonging to a
pre-designed ontology

I Overall there are 2176 single word tokens, 1528 and 288
mentions to entities and relations, about 6830 ambiguous
mentions.
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Experimental Environment
Dataset Ontology
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Experimental Environment
WikiFacts Dataset

I Wikipedia pages are loosely aligned with Freebase triples

I Composed of a collection of summaries, each being a
description of a certain entity. Each summary is considered as
a story.

I About 560k entities extracted from 10k pages, we took a
sub-portion of 1112 pages.

I We marked text between two entities as relation.
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Evaluation Setting

Each story split into two parts: a supervised and an unsupervised
one.

Accuracy on each prediction is measured at the same time when
the prediction is made.

Two results reported:

I All the unsupervised sentences of a story (ALL)

I Only the last sentence of the story (LAST)
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Competitors

Rule-Based
An informed model that buffer statistics on the supervisions
received up to time t.

Already seen mention: predicts the most common supervision

Never seen mention: responds with the most frequent
supervision of the story

Deep-RNN
A simple neural mention classifier

I Input [e, ê]

I 1 hidden layer of size 600

I Softmax activation in the output layer

NB: Both models always predicts on ground truth mentions!
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Results
Entities
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Results
Relations
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Results
WikiFacts

Model 10% 25% 50% 90%

All

RB 16.84 40.44 48.28 49.55
Deep-RNN 0.6 3.01 12.34 21.78
Our Model 39.25 54.57 69.64 75.45
Re-Reading 44.75 54.66 66.88 70.55

Last

RB 17.28 40.87 48.04 49.37
Deep-RNN 0.6 3.25 12.11 21.37
Our Model 37.44 52.93 67.45 75.37
Re-Reading 43.41 53.38 65.13 70.39
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Conclusions and Future Works

We presented an end-to-end model for entity/relation mentions
discovery and disambiguation in text streams by constantly
updating an interpretable KB

Next Steps

I Entity and Relation Types introduction

I Higher-level reasoning

I Dynamic KB re-organization (pruning, merging etc..)
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Thank You !!!
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