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Abstract

A key point in the success of machine learning, and in particular deep learning,

has been the availability of high-performance computing architectures allow-

ing to process a large amount of data. However, this potentially prevents a

wider application of machine learning in real world applications, where the

collection of training data is often a slow and expensive process, requiring an

extensive human intervention. This suggests to look at possible ways to over-

come this limitation, for instance injecting prior knowledge into a learning

problem to express some desired behaviors for the functions to be learned.

In this thesis, we consider the case of prior knowledge expressed by means

of first-order logic formulas to be integrated into a learning problem. In par-

ticular, at first the formulas are converted into real-valued functions by means

of t-norm fuzzy logic operators. Thereafter, a loss component (a constraint)

is assigned to any function representing a formula and all these components

are aggregated (e.g. summed) together with other possible loss components,

e.g. a regularization term or some loss components associated to supervisions,

if they are available for the functions to be learned. Both the functional rep-

resentation of a formula and the mapping into a loss component have been

investigated, and some theoretical results are discussed to get an insight on

how to bring some benefits for different learning schemata. In particular we

define a fragment of  Lukasiewicz logic that guarantees to yield convex func-

tional constraints given any knowledge base made of first-order logic formulas.

The convexity of these constraints is exploited to formulate collective classi-

fication as a quadratic optimization problem and some experimental results
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are discussed. In addition, we extend classic Support Vector Machines with

logical constraints, still preserving quadratic programming resolution. Since

formulas may be logically depending on each other, some of the constraints

may turn out to be unnecessary with respect to the learning process. This

suggests to generalize the notion of support vector to support constraint, and

we provide both logical and algebraic criteria to determine the constraints that

are unnecessary. Finally we present LYRICS, a general interface implemented

in TensorFlow to integrate both deep learning architectures and a first-order

logic representation of knowledge for a learning problem. In particular, we

show several learning tasks that may be addressed in LYRICS, with a special

discussion for the case of visual generation.
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Chapter 1

Introduction

There is a long tradition in the literature relating Mathematical Logic to

Artificial Intelligence (AI) tasks. On the one hand, the former provides a

rigorous and mathematical tool to investigate the soundness of reasoning. On

the other hand AI focuses on the capacity of machines to mimic ”cognitive”

functions, generally associated to an intelligent behavior, such as learning and

problem solving. In particular, several logical systems have been considered

to investigate formal environments where, by means of a set of axioms, some

facts are fixed and inference obeys to one or more explicit rules. Modifying

the axioms and the inference rules, different aspects of real behaviors can

be modeled and rigorously investigated. The most known example is given

by Boolean Logic where any proposition is assigned a truth value, either 0

for ”false” or 1 for ”true”. However, in modeling a real world environment,

we could deal with partial or imprecise information that is not suitable to be

interpreted as absolutely true nor absolutely false. This is a reason why, many-

valued logics, and in particular fuzzy logics, have been introduced to represent

and manipulate a set of truth degrees that in case of fuzzy logic coincides with

the unit interval [0, 1]. This is a reason why it has been applied to many fields,

from control theory to artificial intelligence and in particular in this thesis,

we adopt a fuzzy logic representation of knowledge to inject logical formulas

into the continuous optimization problem at the basis of the learning process.

In the last few years, machine learning techniques have reached amazing

results in many Artificial Intelligence tasks. This is mostly due to the capabil-

ity of deep learning to jointly learn feature representations and classification

models, especially when dealing with high dimensional input patterns. On

the other hand, a real intelligent behavior of an agent acting in a complex

environment is likely to require some kind of higher-level symbolic inference.

Therefore, there is a clear need for the definition of a general and tight integra-
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tion between low-level tasks, processing sensorial data that can be effectively

elaborated using deep learning techniques, and logic reasoning that allows

humans to take decisions in complex environments.
This thesis lays at the intersection of two fields, machine learning and

mathematical (fuzzy) logic. In particular, we present a general framework

to integrate these two disciplines both providing theoretical results to be ex-

ploited into some learning schema and implementing in TensorFlow a general

interface, called LYRICS. LYRICS is a software realizing the integration of

deep neural networks and logical reasoning allowing the full expressiveness

of first-order logic. Combining machine learning and logical reasoning has

been proposed by several authors with different approaches in the literature.

In general, formal logic allows us to express the knowledge about a learning

problem by manipulable symbols occurring in formulas. However, these sym-

bols may be chosen according to different language orders and formulas may

be integrated into a learning problem according to different strategies and ex-

ploiting possible structures of the available information. On the other hand,

the majority of machine learning techniques rely on the general paradigm of

defining a loss function measuring the performance of a certain model on a

certain task, and minimizing the cost in order to learn the best model pa-

rameters. This is a reason why the framework we propose is based on the

conversion of logical formulas into loss components (constraints expressing

the distance from satisfaction of the formulas) to be optimized with respect

to the model parameters. This conversion may be carried out in several ways,

however the main aspects are basically two. The first one is how to give

a functional representation to formulas, the second one is how to assign to

each functional a loss component. The way we decide to carry out these two

steps gives rise to different loss functions, some of which may be easier to

be optimized by a learning algorithm. This suggests to analyze the algebraic

properties of functions corresponding to formulas and in particular we show

that a fragment of  Lukasiewicz logic yields convex constraints. Since the re-

sult is about logic, it may be exploited to get benefits in different learning

schemata integrating prior knowledge by logical formulas.

With LYRICS, we propose a TensorFlow library automatically implement-

ing the conversion of a high-level representation given by logical formulas into

loss functions and an integration with task-oriented deep learning architec-
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tures. On the one hand LYRICS allows us to formulate a learning problem as

a first-order logic (FOL) model where variable domains, FOL functions and

predicate functions are declared. On the other hand, providing real data and

machine learning models to implement the involved functions, the learning

problem is defined by converting and aggregating all the constraints (formu-

las) into an overall loss function to be optimized.

1.1 Motivation

In spite of the amazing results obtained by deep learning in many applica-

tions, a real intelligent behavior of an agent acting in a complex environment is

likely to require some kind of higher-level symbolic inference. Therefore, there

is a clear need for the definition of a general and tight integration between

low-level tasks, processing sensorial data that can be effectively elaborated

using deep learning techniques, and logic reasoning that allows humans to

take decisions in complex environments. The success of deep learning relies

on the availability of a large amount of supervised training data, however

in real world applications, differently from ad hoc benchmarks, data can be

partially labeled or contain labeling mistakes making the application of deep

architectures generally difficult. On the other hand, concerns on what learn-

ing really means raise: how much deep learning simply relies on remembering

previously seen patterns? How robust is such a system in an adversarial

or uncontrolled environment, where outliers are either unpredictable or even

forged to fool the trained system? These concerns have shifted the attention

onto automatic feature development for supervised learning without the in-

jection on any prior knowledge at the problem at hand. The introduction of

prior-knowledge into the learning process is a fundamental step in overtaking

these limitations. First, it does not require the training process to induce the

rules from the training set, therefore reducing the number of required training

data. Secondly, the use of prior-knowledge can be used to express the desired

behavior of the learner on any input, providing benefits in a semi-supervised

environment. In addition, a high level declarative mechanism can be an easier

and more natural way to express the architecture of the learning task, instead

of relying on hand-crafted cost functions.
The integration of deep learning and logic reasoning is still an open-
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research problem and it is considered to be the key for the development of

real intelligent agents. This integration gives rise to several related issues and

this thesis discusses possible solutions in this respect. For instance, we focus

on the way some prior-knowledge expressed by logical formulas may be con-

verted into functional constraints and injected into a learning scheme. On the

other hand, an optimization problem can be solved with efficient algorithms

in the case it is convex, or even better if it is quadratic. In particular, con-

vex optimization is not affected by the presence of local minima, indeed any

local optimum is also global and it guarantees the existence (and unicity in

the strong convex case) of an optimal solution under opportune hypothesis,

e.g. the KKT-conditions that are both necessary and sufficient for the convex

programming case. This is a reason why we investigated the possible con-

versions of formulas into loss components and we provide a  Lukasiewicz logic

fragment allowing us to map first-order logic formulas into convex functional

constraints. Moreover, in a learning from constraints problem, several con-

straints may be involved in the optimization process, but some of them may

turn out to be unnecessary. In the specific case of logical constraints, where

some consequence relations may hold among the involved formulas, we provide

some analytical criteria to determine which are the unnecessary constraints

for a certain learning problem. As a result, the unnecessary constraints may

be cut off and the number of constraints to be enforced can be reduced still

getting the same feasible solutions for the optimization process.

As we already noticed, a machine learning problem may be generally de-

fined by formulating a loss function to be minimized, and logical formulas may

express the knowledge about the problem and therefore be converted into ad-

ditional loss components. In order to implement an environment where a

learning problem is totally defined by first-order logic formulas and any un-

known function to be learned can be represented by an opportune machine

learning model, we present LYRICS. In LYRICS, once all the learning objects

are defined, any formula is automatically converted into a loss component

according to a certain fuzzy logic semantics. This allows us to formulate a

learning problem by declaring all the available information for the task by

means of constraints in a high-level language, i.e. by first-order logic formu-

las, and then parsing them into loss components. In this respect, the above
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mentioned theoretical results can be applied in LYRICS, simply specifying

how the formulas have to be mapped into functional constraints.

1.2 Thesis Summary

This thesis presents some novel results on the way a set of FOL formulas can

be injected into a learning problem. In particular, the FOL rules are converted

into functional constraints and aggregated into an overall loss function. In this

respect, we provide a  Lukasiewicz logic fragment yielding convex functional

constraints and we show that it is maximal to preserve convexity. Expressing

formulas in this fragment allows us to extend classic Support Vector Machines

still preserving quadratic optimization and some experimental results are dis-

cussed. The consequence relation among formulas can make some constraints

unnecessary with respect to the learning problem and we provide both logical

and algebraic criteria to determine which formulas may be cut off without

influencing the set of possible solutions. Finally, the theoretical results can be

exploited in LYRICS, where several machine learning tasks may be formulated

in a constraint-based environment with full first-order logic expressiveness.

1.2.1 Major Contributions of the Thesis

The contributions of this thesis may be summarized as follows.

1. Identification of a logical fragment of  Lukasiewicz logic coinciding with

the class of all the McNaughton functions that are convex.

Based on [52].

2. Definition of collective classification problems as quadratic optimization

exploiting the proposed convex fragment of  Lukasiewicz logic.

Based on [51].

3. Extension of Support Vector Machines by logical constraints still pre-

serving quadratic optimization.

Based on [50].
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4. Generalization of the notion of support vector to support constraint. In

particular, some criteria to determine if a certain constraint is unneces-

sary are provided.

5. Development of LYRICS, a TensorFlow implementation extending Se-

mantic Based Regularization with first-order logic functions and provid-

ing a high-level language to express the constraints.

Based on [98].

6. Introduction of Deep Logic Models, a class of graphical models integrat-

ing symbolic and sub-symbolic learning. However, this framework is still

under investigation and we do not provide any experimental result in

this thesis.

Based on [97].

1.3 Structure of the Thesis

The thesis is organized as follows.

Chapter 2 recalls the fundamentals of mathematical logic and machine

learning theories and introduces some terminology that will be exploited in

the following chapters. For what concerns logic, we introduce the well-known

Boolean logic both in propositional and first-order case, and Fuzzy logic that

provides an extension for truth evaluation of formulas in the unit interval. In

addition, we introduce general fuzzy aggregation functions and in particular

we discuss the case of generated archimedean t-norms. For what concerns

machine learning, we give an overview of the main constituents of this field.

In particular, we describe some common tasks, algorithms and models, re-

porting some examples and emphasizing how machine learning can be related

to general learning from constraints.

Chapter 3 discusses some related literature and presents some frameworks

where the integration of machine learning and logical reasoning is realized. In

particular, we present in more detail Markov Logic Networks, Probabilistic

Soft Logic, Semantic-Based Regularization and Logic Tensor Network. How-

ever, a wide variety of frameworks are described in order to give a general

overview of the relevant approaches considered by different authors. In addi-
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tion, we briefly introduce Deep Logic Models, a novel architecture integrating

probabilistic logic and deep neural networks.

Chapter 4 presents the main theoretical results of the thesis. To start, we

describe the approach we adopt to convert formulas into continuous functions

and thereafter into loss functions. To this regard, we identify a fragment of

 Lukasiewicz logic guaranteeing convexity for the functional representations,

but some others conversions are discussed. In particular, since a special class

of t-norms have a representation in terms of unary functions called generators,

we investigate the use of generators to produce different loss functions.

Chapter 5 discusses how the concave fragment of  Lukasiewicz logic may

be exploited in different learning schemata to inject convex functional con-

straints. For instance, we show how to extend Support Vector Machines still

preserving quadratic programming and we show some experimental results.

As a consequence, the notion of support vector can be refined to support

constraint and we show how to determine the constraints that are not neces-

sary for an optimization process, providing some theoretical characterization

of unnecessary constraints. In addition, we show that the proposed logical

fragment yields an expressiveness extension of Probabilistic Soft Logic.

Chapter 6 presents LYRICS, a general interface to integrate first-order

logic and machine learning architectures. Firstly, we define the LYRICS lan-

guage providing some examples on how to implement a learning environment

and we describe how the constraints are automatically mapped into Ten-

sorFlow computational graphs. Secondly, we implement some examples of

learning and reasoning tasks that can be carried out in LYRICS in order

to enlighten its versatility. Finally, we discuss the case of a generative (ad-

versarial) setting showing the simplicity of the proposed framework, e.g. in

defining generally complex loss functions associated to Generative Adversarial

Networks.

Chapter 7 briefly introduces Deep Logic Models, a framework allowing the

integration of deep learning architectures with probabilistic logic inference in

graphical models. The model is considered for the purpose of overcoming

some limitations of existing frameworks combining symbolic and sub-symbolic

approaches.

Chapter 8 outlines a discussion and concluding summary of the research
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presented in the thesis. The major findings of the thesis are discussed with an

overall summary of the contributions given. Further, we discuss some possible

extensions for the presented results and possible areas of future work.



Chapter 2

Logic and Machine Learning Foundations

The work presented in this thesis is fundamentally based on two disciplines,

Machine Learning and Mathematical Logic, whose basic notions are described

in this chapter. Machine learning can be seen as the study of algorithms and

statistical models that computer systems may implement to progressively im-

prove their performance on a specific task. In particular, it concerns the

construction of a mathematical model from some ”training data”, in order

to make predictions on unseen data without being explicitly programmed to

perform the task. On the other hand, mathematical logic is a subfield of math-

ematics focused on the application of formal logic to mathematics. In par-

ticular, it concerns the study of the consequence relation among propositions

and the way truth preserves by reasoning. Indeed the strengths of combining

logic with learning settings are multiple. For instance, logic offers different

formal languages to express the available knowledge for a learning setting ac-

cording to the granularity of the considered expressiveness, e.g. propositional

logic and first–order logic. In addition, allowing the embedding of a reasoning

process into a learning problem generally outperforms the performance on a

certain task, reducing the number of required supervised data and reinforcing

the learnable facts that are coherent with the logic rules.

The chapter is organized as follows. In the first three sections we present

the main logical frameworks we will deal with as well as some terminology

and fundamental results. We start in Sec. 2.1 introducing boolean logic both

in the propositional and first–order case. The knowledge expressed in a learn-

ing problem generally consists of a set of boolean formulas, however in order

to deal with continuous values it may be suitable to consider a fuzzy logic.

In Sec. 2.2 we introduce the basic notions of t-norm fuzzy logics as well as

the theorems characterizing a functional representation of the fundamental

fuzzy logics. In addition, in Sec. 2.3 we extend the investigation on fuzzy
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connectives to the wide class of fuzzy aggregation functions allowing to aggre-

gate several real values. Finally in Sec. 2.4 we introduce the field of machine

learning, sketching some of the most common tasks it faces, algorithms and

learning models.

2.1 Boolean Logic

Since ancient times, mathematical logic has been considered as the rigorous

discipline studying the soundness of reasoning and the notion of consequence

among propositions. In particular, we are interested in investigating the way

truth preserves and, in this sense, the prime example is given by Classical

(Boolean) Logic (CL) where any proposition has associated either the truth

value 1 (true) or 0 (false). Depending on the granularity in the theory, a logic

can be defined by a propositional or a higher-order language.

The syntax of Boolean propositional logic [39, 138] is built from a (pos-

sible infinite) set of propositional variables p1, . . . , pn, . . .; two propositional

constants 0̄, 1̄ denoting the False and True proposition respectively; and the

logical connectives: ∧ conjunction, ∨ disjunction, ¬ negation, → implication,

↔ equivalence. These elements are combined according to the following in-

ductive definition to build the set of formulas:

• propositional variables and constants are formulas;

• if ϕ,ψ are formulas, then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), (ϕ ↔ ψ) are

formulas.

Any formula represents a proposition whose truth value has to be evaluated.

Formally, a (truth) evaluation is a mapping from the set of propositional

variables to {0, 1}. As a result, the truth value associated to any formula is

defined, according to truth functionality, by the truth functions associated

to the logical connectives occurring in the formula. In Tab. 2.1 the truth

tables of the logical connectives are reported, whereas the logical constants

0̄, 1̄ are always evaluated in 0, 1 respectively. For clarity, with a little abuse

of notation, both the logical connectives and their corresponding semantic

operations are denoted by the same symbols.
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p, q ¬p p ∧ q p ∨ q p→ q p↔ q

0, 0 1 0 0 1 1

0, 1 1 0 1 1 0

1, 0 0 0 1 0 0

1, 1 0 1 1 1 1

Table 2.1: Truth tables of classical logic connectives.

Syntax and semantics are related by the well-known Soundness and Com-

pleteness Theorem, where theorems (provable formulas from CL axioms)

and tautologies (formulas that are evaluated in 1 for any truth evaluation)

are shown to coincide. However, a detailed explanation of this topic is out of

scope and we recommend e.g. [39, 138] for the interested reader.

We introduced Boolean Logic in order to define some fundamental termi-

nology about logic that is used in the next chapters. In particular:

• a literal is a propositional variable or its negation;

• a Horn Clause is a formula l1∧ . . .∧ ln → l, for some literals l1, . . . , ln, l;

• a CNF (Conjunctive Normal Form) is a formula expressed as a conjunc-

tion of disjunctions of literals;

• a DNF (Disjunctive Normal Form) is a formula expressed as a disjunc-

tion of conjunctions of literals.

It is a well-known result [39] that in CL any formula can be equivalently

rewritten in CNF (and dually in DNF). This is an immediate consequence of

the double negation law (¬¬φ↔ φ) and the following properties hold in CL:

De Morgan: ¬(α ∧ β)↔ ¬α ∨ ¬β ¬(α ∨ β)↔ ¬α ∧ ¬β
Distr. Laws: α ∧ (β ∨ γ)↔ (α ∧ β) ∨ (α ∧ γ) α ∨ (β ∧ γ)↔ (α ∨ β) ∧ (α ∨ γ)

2.1.1 Boolean Predicate Calculus

Propositional logic does not allow us to express any structure in atomic formu-

las. This is a reason why First–Order Logic (FOL) is more suitable for settings

where some relational knowledge among the objects of a certain domain can
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be expressed. Indeed, while propositional logic deals with simple declarative

propositions, FOL additionally covers predicates, functions and quantifica-

tion. For instance, consider the two sentences ”Socrates is a philosopher”

and ”Plato is a philosopher”. In a propositional language, these sentences are

viewed as being unrelated and have to be denoted by two different variables

such as p and q. On the other hand, the predicate ”is a philosopher” occurs

in both sentences, which have a common structure that could be denoted, for

instance, by philosopher(Socrates) and philosopher(Plato).

Formally, a predicate language consists of a non-empty set of predicates

(also called relations) p(ap), q(aq), . . . each together with a positive natural

number ap, aq > 0 (its arity); a (possibly empty) set of functions f (af ), g(ag), . . .

each together with its arity; a (possibly empty) set of object constants c, d, . . .

and an infinite set of variables x, y, z . . .. Finally, logical connectives (∧,∨, . . .)
and 0̄, 1̄ are defined as in the propositional case, while ∀,∃ denote the uni-

versal and existential quantifiers, respectively. The set of terms will refer to

objects in a certain domain and it is inductively defined as:

• variables and constants are terms;

• if t1, . . . , tn are terms and f (n) is an n–ary function, then f (n)(t1, . . . , tn)

is a term.

In first–order logic, the set of formulas is defined upon predicates as:

• 0̄, 1̄ are formulas. If t1, . . . , tn are terms and p(n) is an n–ary predicate,

then p(n)(t1, . . . , tn) is a formula, said atomic formula;

• if ϕ,ψ are formulas, then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), (ϕ ↔ ψ) are

formulas;

• if x is a variable and ϕ is a formula, then (∀x)ϕ, (∃x)ϕ are formulas.1

The semantics of a predicate language is related to structures, where a

structure M = (M, (rp)p, (rf )f , (mc)c) is given by a non-empty domain M2,

1In the following we will omit brackets in formulas and arity symbols when clear from

the context.
2Since we are interested in real-world applications, we will consider the case of finite

domains only.
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for each object constant c, mc ∈M , for each n–ary function f , rf : Mn →M

and for each n–ary predicate p, rp ⊆Mn. In addition, also many-sorted first–

order logics, allowing variables to have different sorts with different domains,

can be considered. However many-sorted first–order logic can be reduced to

single-sorted first–order logic in case of finite number of sorts [40]. In order

to assign a truth value to any formula, we need to associate an element in

a domain to any term. Given a certain structure M, an M–evaluation v is

inductively defined such that, for every variable x, v(x) ∈M ; for every n–ary

function f and terms t1, . . . , tn, v(f(t1, . . . , tn)) = rf (v(t1), . . . , v(tn)).

Finally, a truth value is associated to any formula with respect to an

M–evaluation v by:

p(t1, . . . , tn) −→ (v(t1), . . . , v(tn)) ∈ rp?1 : 0

¬ϕ,ϕ ◦ ψ with ◦ ∈ {∧,∨,→,↔} −→ as in the propositional case.

∀xϕ(x) −→ minx(ϕ(x))

∃xϕ(x) −→ maxx(ϕ(x))

where the expression x?y : z is called the conditional or ternary operator,

returning y if x is true and z otherwise.

In the next chapters, we will refer to the following nomenclature.

• Given a set of formulas T , M is said a model of T if every formula in T

is evaluated in 1 for any M–evaluation.

• A formula is said to be in prenex normal form (pnf) if it is in the form

Q1, . . . , Qnϕ where Q1, . . . , Qn ∈ {∀,∃} and ϕ does not contain any

quantifier.

Theorem 2.1. Any formula of classical (both in propositional and first–order)

logic has an equivalent pnf [39].

2.2 Fuzzy Logic

In Classical Logic, we can only deal with two truth values, 0 for false and 1 for

true. The main difference with both many-valued and fuzzy logics is to extend

the set of truth values. In fuzzy logic the real unit interval [0, 1] is taken as

set of truth values, where 0 denotes the absolute false and 1 the absolute true.
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Fuzzy logics have widely been investigated in the literature by several authors

with different intentions. In this section, we introduce the basic notions of

propositional3 fuzzy logics and the three main continuous fuzzy logics, e.g.

Gödel,  Lukasiewicz and Product. Fuzzy logics enjoy truth functionality and,

according to [62], they can be defined upon a certain t-norm (triangular norm)

representing a continuous extension of boolean conjunction. All the chosen

truth functions of connectives must be a generalization of classical two-valued

logic, hence when restricted to crisp values {0, 1} they have to be equal to

their corresponding booleans.

Definition 2.1 (t-norm). An operation ⊗ : [0, 1]2 → [0, 1] is a t-norm if and

only if for every x, y, z ∈ [0, 1]:

x⊗ y = y ⊗ x, x⊗ (y ⊗ z) = (x⊗ y)⊗ z, x⊗ 1 = x, x⊗ 0 = 0,

x ≤ y −→ x⊗ z ≤ y ⊗ z, x ≤ y −→ z ⊗ x ≤ z ⊗ y .

⊗ is a continuous t-norm if it is continuous as function.

Example 2.1. Some of the most prominent examples of t-norms are:

Gödel: x⊗G y = min{x, y}

 Lukasiewicz: x⊗ L y = max{0, x+ y − 1}

Product: x⊗Π y = x · y

Drastic: x⊗D y =


x if y=1

y if x=1

0 otherwise

Gödel,  Lukasiewicz and Product t-norms are referred as the fundamental

t-norms because all the continuous t-norms can be characterized [106] with

respect to them by ordinal sums4. The Drastic t-norm is not continuous,

however it is interesting to notice that this is the least t-norm with respect

to the partial order among t-norms defined as follows. This order will play a

3The fuzzy generalization of FOL is not presented in this work since, as we better clarify

in Chap. 4, we are mostly interested in the propositional case.
4The interested reader is referred to [69] for a definition of ordinal sums for t-norms.



2.2. Fuzzy Logic 17

fundamental role in Sec. 4.2, where we will extend the analysis to the wide

variety of fuzzy aggregation operators.

⊗1 ≤ ⊗2 iff x⊗1 y ≤ x⊗2 y, ∀x, y ∈ [0, 1] . (2.1)

A symmetric generalization of disjunction to continuous values in [0, 1] is given

by the notion of t-conorm. This is defined as a t-norm except the identity

and annihilating elements are inverted. We will come back to this notion

underlining its relation with the t-norm after introducing strong negations.

Given a continuous t-norm ⊗, it is definable its corresponding residuum

⇒ that generalizes the notion of implication and it is uniquely determined by

x⇒ y = max{z : x⊗ z ≤ y} .

This is strictly related to the law of residuation

x⊗ z ≤ y iff z ≤ x⇒ y

that, as a special case, yields x ≤ y if and only if (x⇒ y) = 1.

It is worth noticing that, in any fuzzy logic, a t-norm and its residuum

allow us to recover two additional logical connectives related to the order

among reals ≤, a conjunction and a disjunction, whose truth functions are the

min and max operations respectively. As a special case, we note that in Gödel

logic the minimum corresponds exactly to the t-norm. These connectives are

said weak in contrast to t-norms and t-conorms that are called strong. The

min and max operations, denoted by ∧ and ∨ respectively, are defined as:

x ∧ y = x⊗ (x⇒ y) x ∨ y = ((x⇒ y)⇒ y)⊗ ((y ⇒ x)⇒ x) . (2.2)

As we already pointed out, the whole fuzzy logic can be determined by the

chosen t-norm. In addition, by means of the residuum, it is definable the truth

function of a negation by the unary operation ¬x = x⇒ 0. Among negations,

the  Lukasiewicz negation ¬x = 1−x is called the standard negation and plays

a special role. Indeed, among the three negations of the fundamental t-norms,

this is the only one to be a strong negation, namely to be continuous, strictly

decreasing and involutive (e.g. ¬¬x = x). Further, each strong negation was

shown to be a monotone transformation of the standard negation [145]. Given



18 2. Logic and Machine Learning Foundations

Gödel  Lukasiewicz Product

x⊗ y min{x, y} max{0, x+ y − 1} x · y
x⇒ y x ≤ y?1 : y min{1, 1− x+ y} x ≤ y?1 : yx
¬x x = 0?1 : 0 1− x x = 0?1 : 0

x⊕ y max{x, y} min{1, x+ y} x+ y − x · y
x→ y max{1− x, y} min{1, 1− x+ y} 1− x+ x · y

Table 2.2: Up to down are reported the truth functions of t-norms, residuum,

negation, dual t-conorms and material implication of the fundamental fuzzy logics.

a t-norm ⊗ and a strong negation ∼, the function defined as follows is called

its ∼-dual t-conorm (only dual t-conorm if ∼ is the standard negation).

x⊕ y =∼ (∼ x⊗ ∼ y)

T-conorms are the t-norm counterparts generalizing the notion of boolean

disjunction to the real unit interval. It is worth noticing that it is not possible

to internally define the dual t-conorm in a t-norm fuzzy logic without a strong

negation. However, some studies on extending fuzzy logics by an involutive

negation have been considered in the literature [17, 41, 43]. On the other

hand, a quite large amount of work on structures characterized by a strong

negation, t-norm and its dual t-conorm with respect to that negation has

been done. Such structures are called De Morgan triples and are studied by

several authors with different applications [4,47,48,154]. The basic difference

between the setting of Mathematical Fuzzy logic and De Morgan triples is the

use of the residuated implication and its associated negation. Anyway, in De

Morgan triples we can easily recover the material implication (here denoted

by →) determined by the t-conorm as:

x→ y =∼ x⊕ y .

In our analysis, the only strong negation we will take into account is the

standard one and in Tab. 2.2 the t-conorms and material implications of the

fundamental fuzzy logics are expressed with respect to this negation.

Some further remarks are in order.

• The only continuous residuum is the  Lukasiewicz one, see Tab. 2.2.
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• Extending a fuzzy logic with an involutive negation allows us to increase

its expressiveness and recover the De Morgan law on the t-norm.

• In general, the distributive laws do not hold between a t-norm and its

dual t-conorm. For instance, for x ∈ (0, 1) in Product logic:

x⊗ (y ⊕ z) = xy + xz − xyz 6= xy + xz − x2yz = (x⊗ y)⊕ (x⊗ z)

2.2.1 Functional Representation of Fundamental Fuzzy Logics

In the next chapters, fuzzy logic truth functions will be exploited into a learn-

ing schema to represent the satisfaction of certain functional constraints in

an optimization problem. Actually, functional representation of propositional

fuzzy logic formulas has been studied by different authors, see for instance [3]

for a detailed analysis of Gödel,  Lukasiewicz and Product logic. The main

idea is that the algebra of formulas on n variables of any fundamental fuzzy

logic is isomorphic to the algebra of functions from [0, 1]n to [0, 1], gener-

ated by projections πi and pointwise operations. As a consequence, for every

formula ϕ depending on n propositional variables, we can consider its corre-

sponding function fϕ : [0, 1]n → [0, 1], whose value on each point is exactly

the evaluation of the formula with respect to the same variable assignment.

In particular, the zero and one formulas 0̄, 1̄ correspond to the constant func-

tions equal to 0 and 1 respectively. Further, given two formulas ϕ,ψ and

◦ ∈ {∧,∨,⊗,⊕,⇒,→}, for every (x1, . . . , xn) ∈ [0, 1]n :

f0̄(x1, . . . , xn) = 0

f1̄(x1, . . . , xn) = 1

πi(x1, . . . , xi, . . . , xn) = xi

f¬̄ϕ(x1, . . . , xn) = ¬fϕ(x1, . . . , xn)

fϕ◦̄ψ(x1, . . . , xn) = fϕ(x1, . . . , xn) ◦ fψ(x1, . . . , xn)

(2.3)

where ¬̄, ◦̄ denote the syntactic logical connectives in formulas corresponding

to the truth functions according to Table 2.2. For short, in the following

we will denote at the same way both the connective and the corresponding

operation if there is no reason of meaning confusion.
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In the remaining of this section, we recall the main results for the funda-

mental fuzzy logics and we recommend [3] for the proofs and some technical

details in definitions.

Gödel Logic:

Definition 2.2. A function f : [0, 1]n → [0, 1] is said an n–ary Gödel function

if for every Gn–region Cρ there exists a function g ∈ {f0̄, π1, . . . , πn, f1̄}, with

f(t) = g(t)

for each t = (t1, . . . , tn) ∈ Cρ.

Theorem 2.2. The class of [0, 1]–valued functions defined on [0, 1]n that cor-

respond to formulas of propositional Gödel logic coincides with the class of

Gödel functions defined on [0, 1]n and equipped with pointwise defined opera-

tions.

 Lukasiewicz Logic:

The fundamental result about the functional representation of  L–formulas is

given by the well-known McNaughton Theorem [3,114]. It states that, for the

propositional case, the algebra of formulas of  Lukasiewicz Logic on n variables

is isomorphic to the algebra of McNaughton functions defined on [0, 1]n.

Definition 2.3. Let f : [0, 1]n → [0, 1] be a continuous function, f is said a

McNaughton function if it is piecewise linear with integer coefficients, that is,

there exists a finite set of linear functions p1, . . . , pm with integer coefficients

such that for all (x1, . . . , xn) ∈ [0, 1]n, there exists i ≤ m such that

f(x1, . . . , xn) = pi(x1, . . . , xn) .

Theorem 2.3 (McNaughton Theorem). The class of [0, 1]–valued functions

defined on [0, 1]n that correspond to formulas of propositional  Lukasiewicz

logic coincides with the class of McNaughton functions defined on [0, 1]n and

equipped with pointwise defined operations.
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Product Logic:

Definition 2.4. A function f : (0, 1]n → (0, 1] is said a monomial function

of order n if there exist mi ∈ Z such that for all (x1, . . . , xn) ∈ [0, 1]n

f(x1, . . . , xn) = 1 ∧
n∏
i=1

xmii .

A function f : (0, 1]n → [0, 1] is said a piecewise monomial function if exists

a finite family {fpq} of monomial functions with

f =
∧
p

∨
q

fpq .

Theorem 2.4. The class of [0, 1]–valued functions defined on [0, 1]n that cor-

respond to formulas of propositional Product logic coincides with the class of

functions f : [0, 1]n → [0, 1] such that for every ε ∈ {1, 2}n with #ε = k, the

restriction of f to Gε either is equal to 0 or is a k-variable piecewise monomial

function.

2.3 Fuzzy Aggregation Functions

In the previous section, we introduced some properties of continuous t-norm

fuzzy logics, where a t-norm is a binary function generalizing the boolean

AND to the unit interval [0, 1]. This can be thought of as a possible way to

aggregate two input fuzzy values into a single output fuzzy value, but we may

be interested in aggregating more fuzzy values at once. For instance, in de-

cision making, we are given a set of values typically representing preferences

or satisfaction degrees restricted to the unit interval to be aggregated. How-

ever, once some values in the unit interval [0, 1] are given, there are several

ways to aggregate them into a single value expressing an overall combined

score, according to what is expected from such mappings. Both t-norms and

t-conorms are prominent examples of aggregation functions, in particular they

are also called conjunctive and disjunctive aggregation functions respectively.

The purpose of aggregation functions is to combine inputs that are typically

interpreted as degrees of membership in fuzzy sets, degrees of preference or
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strength of evidence. Aggregation functions have been studied by several au-

thors in the literature [10, 15, 115], and they are successfully used in many

practical applications, for instance see [60,118,143].

Basic Definitions

Aggregation functions are defined for inputs of any cardinality, however for

simple we will give the main definitions for the case of binary aggregation

functions.

Definition 2.5. A (binary) aggregation function is a nondecreasing function

A : [0, 1]2 → [0, 1], such that:

A(0, 0) = 0, A(1, 1) = 1 .

In particular they can be divided into four classes, i.e. conjunctive, dis-

junctive, averaging and hybrid, according to the pointwise order as already

defined in equation (2.1) for the t-norm case,

A1 ≤ A2 iff A1(x, y) ≤ A2(x, y), for all x, y ∈ [0, 1] . (2.4)

Definition 2.6. An aggregation function A is said to be:

• conjunctive when

A ≤ min ,

• disjunctive when

max ≤ A ,

• averaging (a mean) when

min � A � max ,

• hybrid ( mixed) otherwise.

Conjunctive type functions, combine values as if they were related by a

logical AND operation, e.g. t-norms. On the other hand, disjunctive type

functions combine values as an OR operation, e.g. t-conorms. Averaging

type functions are located between minimum and maximum, which are the
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bounds of the t-norms and t-conorms (the Gödel t-norm and t-conorm re-

spectively). Differently from conjunctive and disjunctive functions, that are

quite sensitive to small and big inputs respectively, averaging type functions

have the property that low values of some criteria can be compensated by

high values of the other criteria functions.

Definition 2.7. In the following are reported the main properties for an ag-

gregation function A. In particular A is said to be:

• commutative when

A(x, y) = A(y, x) for all x, y ∈ [0, 1] ,

• associative when

A(A(x, y), z) = A(x,A(y, z)) for all x, y, z ∈ [0, 1] ,

• idempotent when

A(x, x) = x for all x ∈ [0, 1] ,

• has a neutral element when exist e ∈ [0, 1] such that

A(x, e) = A(e, x) = x for all x,∈ [0, 1] .

It is worth noticing that averaging functions (means) correspond to idem-

potent aggregation functions (excluding the min,max aggregations) because

of monotonicity of aggregation functions. Averaging is the most common way

to combine inputs, since it assumed the total score cannot be above or below

any of the inputs, but is seen as a sort of representative value of all the in-

puts. In fact, it is commonly adopted in voting, decision making, statistical

analysis, and so on. In the following, we report some remarkable examples,

while for more details on averaging functions, we recommend e.g. [10, 14].
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Example 2.2.

(Arithmetic mean) Mn(x1, . . . , xn) =
1

n

n∑
i=1

xi (2.5)

(Geometric mean) Gn(x1, . . . , xn) =

(
n∏
i=1

xi

) 1
n

(2.6)

(Harmonic mean) Hn(x1, . . . , xn) = n

(
n∑
i=1

1

xi

)−1

(2.7)

We notice that Hn ≤ Gn ≤Mn for every n ∈ N.

Despite averaging functions have nice properties to aggregate fuzzy values,

they are not suitable to represent neither a conjunction nor a disjunction, in-

deed they not even generalize their boolean counterpart. This is a reason why,

in the next section, we focus on t-norms and t-conorms, that are associative,

commutative aggregation functions with 1 and 0 as neutral element, respec-

tively. However, it is worth to mention the lot of study in defining logical

connectives from general aggregation functions. For instance in [24, 89, 99],

many authors have considered the use of alternatives for fuzzy conjunctions

and disjunctions with respect to t-norms and t-conorms. This also allows

us to define other fuzzy connectives, in particular the notion of implication

related to more general aggregation functions has been the subject of many

investigations [2,100,115,149]. However a deeper analysis of these approaches

is beyond the scope of this work.

2.3.1 Generated Archimedean T-Norms

In mathematics, t-norms (or triangular norms in full) [78, 81] are a special

kind of binary operations on the real unit interval [0, 1] especially used in

engineering applications of fuzzy logic. In Example 2.1 we presented some

cases of interest, however in the literature a wide class of t-norms has been

considered. In addition, there are several techniques to construct customized

t-norms that are more suitable to deal with a certain problem, e.g. by rota-

tions, ordinal sums of already known t-norms or defining a parametric class.

In this section, we describe the case of archimedean t-norms [80], a special
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class of t-norms that can be constructed by means of unary monotone func-

tions, called generators.

Definition 2.8. A t-norm T is said to be archimedean if for every x ∈ (0, 1),

T (x, x) < x. In addition, an archimedean t-norm is said strict if for all

x ∈ (0, 1), 0 < T (x, x) < x otherwise is said nilpotent.

For instance, indicating by TM , T L, and TP the Gödel,  Lukasiewicz and

Product t-norms respectively, we have the following:

• T L is nilpotent and TP is strict;

• TM is not archimedean, indeed TM (x, x) = x, for all x ∈ [0, 1].

Moreover, as reported e.g. in ( [81], Propositions 5.9, 5.10),  Lukasiewicz and

Product t-norms are enough to represent the whole classes of nilpotent and

strict archimedean t-norms.

Theorem 2.5. Any strict t-norm is isomorphic to TP and any nilpotent t-

norm is isomorphic to T L.

In particular, we are interested in such archimedean t-norms that are

expressible by means of a unary function, called generator. In order to allow

using non-bijective generators, which do not have the inverse function, we

employ the following notion of pseudo-inverse function:

Definition 2.9. Let g be a monotone function, such that g : [a, b] → [c, d]

where [a, b], [c, d] ⊆ R∪{±∞} are two closed subintervals of the extended real

line. The pseudo-inverse function to g is the function g(−1) : [c, d] → [a, b],

defined as:

g(−1)(y) =


sup{x ∈ [a, b] : g(x) < y} if g(a) < g(b)

sup{x ∈ [a, b] : g(x) > y} if g(a) > g(b)

a if g(a) = g(b)

A fundamental result for the construction of t-norms by additive genera-

tors is based on the following theorem (e.g. [79], Theorem 2.3):



26 2. Logic and Machine Learning Foundations

Theorem 2.6. Let g : [0, 1]→ [0,+∞] be a strictly decreasing function with

g(1) = 0 and g(x) + g(y) ∈ Range(g)∪ [g(0+),+∞] for all x, y in [0, 1]. Then

the function T : [0, 1]→ [0, 1] defined as

T (x, y) = g(−1) (g(x) + g(y))

is a t-norm and g is said an additive generator for T .

Further, given a certain generator of a t-norm, we can define a class of

related t-norms depending on a certain parameter whose extreme cases tend

to be well-known t-norms.

Lemma 2.1. Given an additive generator function g of a t-norm T and λ > 0,

then T λ, corresponding to the generator function gλ(x) = (g(x))λ denotes a

class of increasing t-norms and we have:

limλ→0+T λ = TD and limλ→∞T
λ = TM ,

where TD and TM denote the drastic and min t-norms respectively.

As shown in [79], any t-norm T with an additive generator g is archimedean,

further if g is continuous then T is continuous, archimedean and T is strict if

and only if g(0) = +∞, otherwise T is nilpotent. In order to avoid using the

notion of pseudo-inverse function one may exploit the equivalent expression

T (x, y) = g−1
(
min{g(0+), g(x) + g(y)}

)
. (2.8)

Example 2.3. If we take g(x) = 1 − x as additive generator, then also

g−1(y) = 1− y and we get the well-known  Lukasiewicz t-norm T L:

T (x, y) = 1−min{1, 1− x+ 1− y} = max{0, x+ y − 1} .

Example 2.4. If we take g(x) = −log(x) as additive generator, then we have

g−1(y) = e−y and we get the well-known Product t-norm TP :

T (x, y) = e−(min{+∞,−log(x)−log(y)}) = x · y .

The isomorphism between addition on [0,+∞] and multiplication on [0, 1]

by the logarithm and the exponential functions allows two-way transforma-

tions between additive and multiplicative generators of a t-norm. If g is
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an additive generator of a t-norm T , then the strictly increasing function

h : [0, 1] → [0, 1] defined as h(x) = e−g(x) is a multiplicative generator of T ,

namely:

T (x, y) = h−1(max(h(0), h(x) · h(y)))

On the opposite, if h is a multiplicative generator of T , then g(x) = −log(h(x))

is an additive generator of T . For instance, h(x) = ex−1 and h(x) = x are

multiplicative generators of T L and TP , respectively. Additive and multi-

plicative generators are isomorphic and we decide to focus in the former for

simplicity. We only mention that both multiples of additive generators and

positive powers of multiplicative generators determine the same t-norm.

An interesting consequence of equation (2.8) is that it allows us to define

also the other fuzzy connectives, deriving from the t-norm, as depending on

the generator. In particular, we have:

residuum : x⇒ y = g−1 (max{0, g(y)− g(x)}) (2.9)

bi-residuum : x⇔ y = g−1 (|g(x)− g(y)|) (2.10)

These representations will be exploited in the next chapters to define oppor-

tune loss functions from FOL logical constraints. In particular, they also

allow us to analyze the representation of more complex truth functions with

multiple occurring connectives.

Parametrized classes of t-norms

Constructing t-norms by generators may be extended to the construction of

classes of t-norms determined by a generator function depending on a certain

parameter. Several parametrized families of t-norms have been introduced and

studied in the literature. In the following we recall some prominent examples.

Example 2.5 (Schweizer-Sklar t-norms). Consider the following parametrized

generator for λ ∈ (−∞,+∞):

gSSλ (x) =

{
−log(x) if λ = 0
1−xλ
λ otherwise,
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The class of t-norms corresponding to this generator are called Schweizer-Sklar

t-norms, and it is defined as:

TSSλ (x, y) =



TM (x, y) if λ = −∞
(xλ + yλ − 1)

1
λ if −∞ < λ < 0

TP (x, y) if λ = 0

max(0, xλ + yλ − 1)
1
λ if 0 < λ < +∞

TD(x, y) if λ = +∞

A Schweizer-Sklar t-norm TSSλ is archimedean if and only if λ > −∞, contin-

uous if and only if λ < +∞, strict if and only if −∞ < λ ≤ 0 and nilpotent if

and only if 0 < λ < +∞. This t-norm family is strictly decreasing for λ ≥ 0

and continuous with respect to λ ∈ [−∞,+∞].

Example 2.6 (Hamacher t-norms). Consider the following parametrized gen-

erator for λ ∈ [0,+∞):

gHλ (x) =

{
1−x
x if λ = 0

log(λ+(1−λ)x
x ) otherwise.

The class of t-norms corresponding to this generator are called Hamacher

t-norms, and they are the only t-norms which are rational functions.

THλ (x, y) =

{
0 if λ = x = y = 0

xy
λ+(1−λ)(x+y−xy) otherwise.

A Hamacher t-norm THλ is strict if and only if λ < +∞ (for λ = 1 we get

the Product t-norm). This t-norm family is strictly decreasing and continuous

with respect to any λ ∈ [0,+∞].

Example 2.7 (Yager t-norms). Consider the following parametrized genera-

tor for λ ∈ (0,+∞):

gYλ (x) = (1− x)λ

The class of t-norms corresponding to this generator are called Yager t-norms,
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and are defined as:

T Yλ (x, y) =


TD(x, y) if λ = 0

max{0, 1−
(
(1− x)λ + (1− y)λ)

1
λ

)
} if 0 < λ < +∞

TM (x, y) if λ = +∞

A Yager t-norm THλ is nilpotent if and only if 0 < λ < +∞ (for λ = 1 we

get the  Lukasiewicz t-norm). This t-norm family is strictly increasing and

continuous with respect to any λ ∈ [0,+∞]. We also note that the Yager

t-norm arises from the  Lukasiewicz t-norm by raising its additive generator

to the power of λ as described in Lemma 2.1.

2.4 Machine Learning

Learning can be naively described as the process of gaining some knowledge

by experience and modification of a behavioral tendency. As regards machine

learning (ML), we might say that a machine learns whenever it changes its

parameters in order that its expected future performance improves. The per-

formance is generally measured on a certain task and different performance

measures can be applied to different tasks. In particular, ML deals with tasks

associated to artificial intelligence such as pattern recognition, diagnosis, plan-

ning, robot control, prediction, etc. In the following, we only introduce some

basic techniques of machine learning and we recommend, for instance [57,122]

for a more comprehensive coverage of the fundamentals and [55] whose main

focus is on Deep Learning, a successful subfield of ML where deep architectures

are exploited in order to learn very complex functions.

The field of Machine Learning [112,122] defines theories and a wide range

of techniques, which can be used to approximate an unknown function. A

classical starting point for most ML approaches is to define a cost (loss) func-

tional (the same reasoning can be applied to probabilistic methods, where the

cost functional is replaced by a likelihood). The cost functional depends on

the parameters of the approximators and it assumes lower values for func-

tions having a closer-to-desired behavior. For example, the cost functional

can express how the function should behave on some data points or it can
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penalize values outside a given range or force the function to respond sim-

ilarly to different pairs of inputs. Once the cost functional is defined, the

training of the learner becomes an optimization problem with respect to the

parameters, which can be tackled via gradient descent or other optimization

techniques. This is the reason why, one desired property of a cost functional

is to be convex and in Chap. 4 we discuss the case of a convex optimization

problem.

2.4.1 Tasks

High-level human capabilities, such as speech-recognition, language under-

standing and so on, might be too difficult to be replicated with fixed programs.

This is the reason why machine learning approach consists in describing how

the learning system has to process data and consequently modify its parame-

ters. In this view, learning can be considered as the way we attain the ability

to perform the task. A non-exhaustive list of some of the most common

machine learning tasks is reported in the following.

classification. In a classification task we are interested in learning a map f

that assigns a category f(x) ∈ {1, . . . , k} to any input x ∈ Rn, namely

we are asked to specify which of a limited set of categories an input

belongs to. As an example, consider the case in which the input is given

by an image x represented as a vector whose components are the pixel

values of the image and the task is to predict if x contains a human

face. In this case, the task can be defined as the problem of learning a

{0, 1}–valued function f such that, f(x) = 0 means that the image x

does not contain a human face, whereas f(x) = 1 means that it does.

regression. This task is similar to classification except the learning algorithm

is asked to output a function f : Rn → R. For instance, consider the

case of predicting house prices given its square footage, and so on.

anomaly detection. Consider the task of credit card fraud detection. In

this case, the goal is to predict a fraud given an unusual behavior with

respect to some purchase habits. This is an example of a wide range of

techniques aiming to discover outliers from a certain probability distri-

bution, that is also referred as anomaly detection.
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synthesis and sampling. Machine learning algorithms can also be exploited

to generate new examples that are similar to those available in the train-

ing data, this is the case of synthesis and sampling. For instance, if only

a small portion of data is known, we could employ these techniques to

increase the number of available examples according to the data distri-

bution or, as in the case of Generative Adversarial Networks (GANs),

to generate new patterns seeming realistic as the original ones.

missing features. Let us consider the case we are given a set of data where

the inputs are only partially known. In a missing features task, the

goal is to determine the unknown components xis of a certain input

x ∈ Rn. As an example, consider the case we are given a new point

x = (x1, x2) ∈ R2 and we only know its abscissa. For instance, we could

infer its ordinate according to the whole dataset distribution. In we

know x has to be classified in a certain category k, we should determine

x2 with respect to the membership degree of x to k.

density estimation. Sometimes can be useful to consider learning tasks

where the unknown function is a probability density (or probability

mass if x is discrete) function ρ : Rn → R, in this case we talk about

density estimation.

clustering. Given a set of objects, the task of grouping them in such a way

that objects in the same group (called a cluster) are more similar (ac-

cording to a certain criterion) to each other than to those in other groups

is said clustering. In general, the term clustering does not refer to one

specific algorithm, but to the general task to be solved. Indeed, the ob-

jects may be grouped according to a certain measure distance or a statis-

tical distribution. Clustering techniques have been successfully applied

into several fields, as for instance in computational biology, marketing,

social science, and so on.

Performance Measure As we pointed out, learning can be seen as the

process of becoming capable of doing a certain task and this ability has to be

quantitatively evaluated by opportune performance measures. Since machine

learning may carry out very different tasks, it is fair to argue that different
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kinds of evaluations have to be applied and any task may be subject to one or

more metrics with various meanings. For instance, a common choice in task

like classification is the accuracy, that simply is the proportion of examples for

which the unknown function produces the correct output. In particular, we

are interested in measuring the accuracy of the system on data that is unseen

during the training phase, also said test data, this allows us to evaluate the

actual performance in real world applications.

2.4.2 Types of Algorithms

One of the main reason for the recent success of machine learning techniques,

in particular deep learning, is the availability of large amounts of (labeled)

data. Any example in a dataset is generally represented as a real-valued

vector x ∈ Rn, where any component xi denotes the value corresponding to a

certain feature of the example. For instance, if the domain consists of a set of

people, any person could be represented as a vector containing some features,

e.g. age, height, weight and so on. It is worth noticing that the involved

features should be relevant for the considered task, otherwise the learning

problem could be ill-posed or too difficult to be solved. Roughly speaking,

if the task is, for instance, the classification of the prosperity of a person,

it may be misleading to make such a prediction based on its age, height or

weight. However in general, it is not trivial to establish which are the ”right”

features to be considered for a certain task. Labels, also said targets, can be

attached to the training examples in order to provide the desired behavior

for the unknown function to be learned. In a classification problem labels

are generally the values 0, 1 or ±1. If for a certain example x we are given

its label y, the pair (x, y) is said a supervised example, otherwise x is said

unsupervised. In case of multi-task learning problems, namely if we have to

learn more than a single function, we talk about fully labeled problem if for

any example we are given the labels of any learnable function, otherwise is

said partially labeled. According to the availability of targets for the examples

in a certain learning problem, we can consider different learning paradigms.

Unsupervised Learning Let us consider a learning problem where no ex-

ample is provided with a target. In this case, we talk about unsupervised



2.4. Machine Learning 33

learning and the goal is generally the identification of common structures,

patterns or features among the examples to improve the analysis of new data.

A typical unsupervised learning task is clustering that consists in grouping a

set of objects, according to a certain similarity criterion, into different groups

said clusters. However in general, similarity is expressed by a distance function

that can be difficult to be chosen if the input space has a high dimensionality.

Some common unsupervised learning algorithms are: k-means (clustering),

local outlier factor (anomaly detection), autoencoders (neural networks).

Supervised Learning If for a certain example x in input, the desired out-

put y for a function f to be learned is available, we can enforce the prediction

f(x) to be as close as possible to y. Supervised learning assumes a dataset

consisting of examples provided with targets and the goal is to learn one or

more unknown functions according to these input-output pairs. In particular,

the functions are learned exploiting a subset of the whole available dataset

said training set, and the capacity to generalize to new data is measured on

another portion of data said test set. Some common machine learning meth-

ods are widely used in supervised learning algorithms, for instance: Support

Vector Machines (SVMs), Naive Bayes, Artificial Neural Networks (ANNs).

Other Learning Approaches Supervised and unsupervised learning al-

gorithms do not provide a strict categorization. Indeed, other variants of the

learning paradigm are possible. For instance, consider the case of a partially

labeled problem or, more in general, a case in which only a subset of the

available data is provided with target. This is a common setting in real world

applications where only a small portion of data is generally labeled, but we

are given a (possibly) huge amount of unsupervised examples. Such problems

are referred to as semi–supervised learning.

As it is clear, there are several possible ways to deal with a dataset. An-

other interesting example is the case of reinforcement learning, where the

learning algorithm interacts with an environment by means of a feedback

loop. In particular, for any action carried out by the learning system, the en-

vironment provides a reward. The main idea is that actions associated with

greater rewards will be encouraged (reinforced), whereas the others will be

weakened.
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Regularization

A special role in designing efficient machine learning algorithms is played by

regularization. In general, the term regularization refers to a set of modifica-

tions we make to a learning algorithm to express some preference among its

possible solutions. For instance, consider the case we have to learn an affine

function and different solutions are eligible. We may express the preference

for solutions that have a smaller slope adding a penalty term called regularizer

in the optimization objective. Smoother functions are assumed to generalize

better, indeed they return more similar predictions for similar inputs than

irregular solutions. If such preferences are aligned with the problem we want

to solve, the algorithm is shown to get better performance. Please note that,

even if regularization can be exploited to reduce the generalization error, in

general it may increase the training error.

From a philosophical point of view, regularization can be thought of as an

application of the well-known principle of parsimony (Occam’s razor). This

principle states that among equally performing different explanations for the

known observations, we should choose the “simplest” one. Regularization can

also be seen from a probabilistic point of view. Indeed these techniques are

equivalent to the imposition of certain prior distributions on model parame-

ters. In the end, there are many ways to regularize a certain learning problem.

However, there is not a best form of regularization (as shown by the No Free

Lunch Theorem [152]) and we must choose a form that is well suited to the

particular task we want to solve.

2.4.3 Some Models

In the previous pages, we introduced some basic definitions for machine learn-

ing as well as some nomenclature that will be used in the following chapters.

In the remaining of this section, we describe the main aspects of some ML

models without pretending to be exhaustive. We will refer to appropriate

references for more details.
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Support Vector Machines

Support vector machines (SVMs) are a class of kernel methods originally

conceived by Vapnik and Chervonenkis [20]. One of the main advantages of

this approach is the capacity to create nonlinear classifiers by applying the

kernel trick to maximum-margin hyperplanes [12, 20]. This property derives

from the implicit definition of a (possibly infinite) high-dimensional feature

representation of data determined by the chosen kernel. Actually, the class of

methods exploiting the kernel trick is wider than SVMs only and is known as

kernel machines [134, 150]. One general drawback of kernel machines is that

the cost of evaluating the decision function is linear in the number of training

examples. However, support vector machines overcome this limitation, indeed

it turns out that only a portion of the training data is significant to determine

the maximum-margin separating hyperplane in the feature space, the so called

support vectors. In the following we sketch the main steps of the classic

supervised SVMs model.

Given a set of supervised examples X = {(xl, yl) : l = 1, . . . , L} for

a task function f , the learning strategy consists in the minimization of a

regularization term ||ω||2 subject to a set of constraints yl · f(xl) ≥ 1 that

enforce the membership of the example points xl ∈ Rn to the positive (+1) or

negative (-1) class, as specified by the corresponding targets yl. In SVMs the

function f is assumed to be belong to a certain Reproducing Kernel Hilbert

Space (RKHS) [5] with kernel function k, hence f can be expressed as an

expansion of k. Given the kernel properties, f can also be expressed as an

affine function of a high-dimensional feature representation φ of the input

determined by k, namely f(x) = ω · φ(x) + b, where k(x, y) = 〈φ(x), φ(y)〉.
The optimization problem can be defined as

min
ω

1

2
||ω||2

subject to:

yl · f(xl) ≥ 1, for every l = 1, . . . , L

The satisfaction of the constraints can also be obtained by the minimization
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of a hinge loss function not penalizing output values “beyond” the target.

min
ω

1

2
||ω||2 +

L∑
l=1

max{0, 1− yl · f(xl)}

As a consequence, the solution of the optimization problem will depend only

on a subset of the given training data, namely those that contribute to the

definition of the maximum-margin hyperplane separating the two classes in

the feature space, the support vectors. Such points correspond to not null

coefficients of the kernel expansion for the best solution of the above opti-

mization problem and from a constrained optimization point of view, they

correspond to the active constraints of a Lagrangian formulation. Hence, we

can split the training examples into two categories, the support vectors, that

completely determine the optimal solution of the problem and the straw vec-

tors. In Chap. 5 we will extend this paradigm to a class of semi–supervised

learning problems where also logical constraints are enforced on the available

samples.

Artificial Neural Networks

Nowadays, one of the main successfully employed frameworks for dealing with

different machine learning algorithms and process complex data inputs is given

by Artificial Neural Networks (ANNs) [67]. This name is related to the fact

ANNs take inspiration from the biological neural networks that constitute

animal brains. An artificial neural network consists in a group of nodes

(neurons) interconnected by weighted edges (synapses) forming a directed,

weighted graph. Mathematically, every node has associated an activation

function while any edge weight between two nodes, lets say from A to B, cor-

responds to a real number multiplying the output of A to be given as input to

B. Typically, neurons are aggregated into layers and activation functions are

computed by non-linear functions of the weighed sum of its inputs. Data are

processed from the input layer to the output layer eventually moving trough

several hidden layers. In this setting, learning can be regarded as the process

of modifying the edge weights in order for the network to become capable of

performing a certain task.
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The concept of ANN is quite old and has evolved across the years [103,128],

however they currently reach state-of-the-art performances on a variety of

tasks, like computer vision, speech recognition, machine translation, medical

diagnosis and so on. One of the strong point of ANNs is the capacity they

have to automatically identify characteristics from the learning material they

process. According to what they are modeling, ANNs architectures may be

better suited to deal on certain kinds of tasks and data. In facts, a wide

class of architectures have been considered in the literature and new designs

to improve the performance on increasingly complex tasks are continuously

under investigation. In particular it is worth to mention the well-known:

• A Multilayer Perceptron (MLP) is a class of feedforward artificial neural

network with one or more hidden layers. MLPs allows us to approximate

extremely complex functions, further they are universal approximators

(see Cybenko’s Theorem [23]).

• A Convolutional Neural Network (CNN) is a class of deep neural net-

works, where convolutional layers apply a convolution operation to the

input, passing the result to the next layer. CNNs [86] are especially

suited to deal with image classification problem, indeed the convolution

emulates the response of an individual neuron to visual stimuli.

• A Recurrent Neural Network (RNN) is a class of artificial neural net-

work where connections between nodes form a directed graph along a

sequence. Unlike MLPs, RNNs [140] can use their internal state (mem-

ory) to process sequences of inputs. This makes them applicable to tasks

such as language modeling, speech recognition, time series prediction,

and so on.

• A Graph Neural Network (GNN) is a class of artificial neural network

taking as input a graph, namely a set of nodes with edges among them.

GNNs [133] are especially suitable to deal with structured inputs, where

the connections among patterns is knowns and can be exploited by the

network.

All these architectures generally depend on a set of parameters to be deter-

mined in order to learn how to perform a certain task. Even if some differences
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among the algorithms for training such networks have to be considered, the

general adopted method is simply Backpropagation [130] (backward propaga-

tion of errors). Backpropagation is a method to distribute an error computed

at the output layer of an ANN throughout the network’s layers. In particular,

it is commonly used by the gradient descent optimization algorithm to adjust

the weight of neurons by calculating the gradient of the loss function.

2.4.4 ML as Learning from Constraints

In this section, we introduced basic definitions of machine learning theory

presenting some of the main arguments that are involved in this thesis. As

we already noticed, ML includes a wide range of techniques and algorithms,

however as claimed e.g. in [57], the whole theory can be framed around the

unifying notion of constraint. The concept of constraint has been considered

in the definition of general approaches for learning that allow us to exploit

different sources of knowledge for training an agent [57, 129]. While the con-

straints formally represent the available information about the environment,

the agent is supposed to learn specific tasks satisfying them [44,54].

Learning from constraints is an extension of classical supervised learning

in which the concept of constraint is used to refer to a more general class of

knowledge than simple labeled examples. An extensive investigation of dif-

ferent kinds of constraints can be found in [53], where variational calculus

is exploited to generalize the Representation Theorem for kernel machines.

In general, whenever we are dealing with a multi-task learning problem in

which the functions to be learned are subject to a set of relational bonds, we

can exploit constraints to formalize these interdependency. This is exactly

the adopted paradigm of constraint programming (CP) [101], initially inves-

tigating only logic programming languages [68], where different constraints

are embedded into a host language. In CP, different relations among vari-

ables are stated by various kinds of constraints like logical formulas, linear

inequalities, etc. and the main goal is to determine the assignation for the

unknown variables satisfying the largest number of constraints at the same

time. The integration of constraint-based techniques with machine learning

has been considered, and is still under investigation, by several authors in

the literature [9, 31, 119], so as its effectiveness with respect to deep learning
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architectures [113]. As illustrated in Chap. 4, in this work we mostly focus

on logical constraints, which provide an expressive and formally well-defined

representation for abstract knowledge.





Chapter 3

Learning and Logical Reasoning

In real-world applications it is not uncommon to deal with uncertain and vague

information to face a certain task. This is one of the main reasons why many

frameworks, with slightly different representation formalisms [131], arose from

the integration of relational systems and probabilistic models as particular

subdisciplines of artificial intelligence. All these frameworks can be grouped

under the broader field of statistical relational learning (SRL) [74, 117], that

is equally concerned with learning, reasoning and knowledge representation.

One of the most employed formalism to represent relational knowledge in SRL

is given by first–order logic (FOL) syntax and we mostly focus on approaches

based on this language. In this chapter, we present some related literature

and some of the most studied systems dealing with learning and symbolic

reasoning on logical representations of a certain knowledge base.

3.1 Related Works

There are several approaches to embed logical knowledge into learning pro-

cesses. Minervini et al. [102] propose to use prior knowledge to correct the

inconsistencies of an adversarial learner. Their methodology is designed ah-

hoc for the tackled task, and limited to Horn clauses. Related approaches

also combine logic rules with neural networks. For instance, Hu et al. [66]

propose an iterative procedure that transfers abstract knowledge encoded by

the logic rules into the parameters of a deep neural network. Their method

is also based on a fuzzy generalization of FOL. However, the definition of the

framework is limited to universally quantified formulas and to a small set of

logic operators. Moreover, the connections between logic and kernel machines

have been the subject of many investigations. For instance, in [22] a family

of kernel functions is built up from a Feature Description Language to exploit



42 3. Learning and Logical Reasoning

the relational structure of the domain. One limitation of this work is that the

integration with the logic formalism does not reveal very tight connections. A

different approach is considered in [34, 137], where the t-norm theory is used

to translate first–order logic formulas into real-valued functions, the logical

constraints. In [33] the authors were able to extend the classical regularization

scheme of kernel machines to incorporate logical constraints. Unfortunately,

the objective function depending on the logical constraints turns out to be not

convex in general, unless one restricts the attention to only Horn clauses [35].

With respect to this point, the fragment we present in Sec. 4.1 provides the

complete set of formulas that can be written in  Lukasiewicz logic to get convex

functional constraints. In particular, we are interested in methods exploiting

the transcription of logical rules into real valued functions to define appro-

priate cost functions to be optimized in the learning process. Compared to

this, fuzzy logic (see Sec. 2.2) turns out to be a valuable choice in defining

the mapping between formulas and constraints since it provides continuous

operators as truth functions evaluated in the real-unit interval.

In the following, we present an overview of some prominent frameworks

that are related to the integration of symbolic and sub-symbolic processes for

learning and inference.

ILP. One of the best known research area that combines logic program-

ming with machine learning techniques is Inductive Logic Programming (ILP)

[107,109]. The general inductive problem is as follows: given a set of positive

P and negative N examples and a consistent background knowledge B, find a

hypothesis H such that the conjunction of H and B entails all the examples

of P and none of N . A large number of hypotheses typically fits such a defini-

tion. For instance the Bayesian ILP setting [108] assumes a prior probability

distribution defined over the hypothesis space. In [27] clauses are given a

probability value and two methods to estimate these parameters and the hy-

pothesis are provided. In addition, it is worth to mention some related works

on Inductive Logic Programming and kernel machines like [84] and [110]. In

the first paper the learning algorithm first–order inductive learner (FOIL) is

combined with kernel methods by leveraging FOIL search for a set of relevant

clauses. The latter paper defines a kernel, that is an inner product in the
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feature space spanned by a given set of first-order hypothesized clauses.

MLN and PSL. As we already mentioned, statistical relational learn-

ing [49] deserves a special mention in this overview. SRL focuses on relational

domains under uncertainty, where relations among objects are expressed by

first–order logic formulas and uncertainty is handled by setting up probabilis-

tic graphical models, like Bayesian networks [70]. Probabilistic logic learning

has been the subject of many investigations from several authors and we rec-

ommend [26] for a survey. In these years, a lot of frameworks arose into this

field, among which emerged Markov Logic Networks (MLNs) [120] and Prob-

abilistic Soft Logic (PSL) [13,75]. Formally an MLN is a set of weighted FOL

formulas, but can be viewed as a template for constructing Markov Random

Fields (MRFs) [77] to model the joint distribution of the set of all the pos-

sible atomic groundings in formulas. Nevertheless, in such approach logical

formulas are assumed to be evaluated as true-false values, whereas a more

general expressiveness is achieved in PSL where formulas can take any [0, 1]

value. Analogously to MLN, PSL can be viewed as a template for Hinge–Loss

Markov Random Fields, that are continuous generalization of MRFs whose

formulas are restricted to disjunctive clauses (including Horn clauses as a spe-

cial case) and translated by the  Lukasiewicz t-norm and t-conorm. With this

restriction, the most probable assignment (MAP) to the unknown variables

reduces to a convex optimization problem [8] avoiding the general intractabil-

ity of MLNs and they also provide different approaches to estimate the rule

weights [6]. As we point out in Sec. 5.4, where a more accurate comparison

with PSL is discussed, the set of formulas keeping convexity in this frame can

be extended.

ProbLog and DeepProbLog. Symbolic reasoning [29, 73, 75], which is

typically based on logic and probability, allows us to perform high-level infer-

ence (possibly under uncertainty) without having to deal with thousands of

learning hyper-parameters. Over the years, several probabilistic logics [42] e.g.

PRISM [132] and Stochastic Logic Program (SLP) [111], have been introduced

with the aim of carrying out both learning and reasoning task, exploiting log-

ical representation and probabilistic inference. For instance ProbLog [28], a

probabilistic extension of Prolog [18], builds programs encoding interactions
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for a large sets of facts (clauses), each associated with a certain uncertainty. In

particular, a ProbLog program T specifies a probability distribution over logic

programs (assumed as mutually independent) by specifying for each clause

the probability that it belongs to a certain sub-program of T . Then, the

success probability of any query is defined as the probability that it succeeds

in these subprograms. However, in order to compute the success probabil-

ity of queries, the enumeration of all the possible logic programs is generally

not feasible. Then ProbLog convert all the programs, queries and evidence

to a weighted Boolean formula whose probability can be computed, e.g. by

weighted model counting, exploiting state-of-the-art methods known from the

literature. Some extensions of ProbLog have been considered to both increase

its expressiveness and to exploit possible integration with sub-symbolic mod-

els. For instance, in [76] the authors consider also algebraic facts, each labeled

with an element of an opportune semiring, and the semiring is used to cal-

culate labels of possible worlds and of queries. More recently, DeepProbLog

has been proposed [95], a generalized version of ProbLog to integrate logi-

cal reasoning and deep learning models. The main idea is to consider the

atomic expressions as neural predicates in an existing probabilistic logic pro-

gramming language, in this particular case ProbLog. However a limitation

of this approach is that DeepProbLog requires the output from the neural

networks to be probabilities and atomic formulas to be independent, while

the sub-symbolic layer often consists of several neural layers sharing weights.

ProPPR, TensorLog and Neural LP. Even if recent work has tried to

gain insight on how a deep model works [94], sub-symbolic approaches are

still mostly seen as black-boxes, whereas symbolic approaches are generally

easier to interpret, as the symbol manipulation or chain of reasoning can be

unfolded to provide an understandable explanation to a human operator. An

interesting extension of SLP that enables efficient learning and inference on

graphs is given by ProPPR [148]. ProPPR is a probabilistic logic generating

first–order theories via parameter learning, where inference can be carried

out restricting on small graphs of local groundings. This property guarantees

the scalability of the approach with respect to large database. For instance

in [147], it is shown how to learn continuous low-dimensional embeddings
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for first–order logic formulas from scratch, on two knowledge base completion

tasks. In particular, the training examples and inference formulas are mapped

into a binary matrix, then the latent continuous representations of examples

and logical formulas is learned via a low-rank approximation method of ma-

trix factorization. In [19] is presented a probabilistic deductive database,

called TensorLog, in which reasoning uses a differentiable process. TensorLog

is shown to be faster than ProPPR with large numbers of training examples

while ProPPR should be faster for very large database and small numbers of

training examples. In TensorLog logical inference is carried out by sequences

of differentiable numerical operations on matrices. However, this framework

is limited to learning only the parameters of the logical rules. An extension

to jointly learn the structure of the rules is proposed by Neural Logic Pro-

gramming (Neural LP) [124] a completely differentiable system for learning

models defined by sets of first–order logic rules exploiting gradient-based pro-

gramming frameworks and optimization methods for the inductive logic pro-

gramming task. In Neural LP, parameters and structure are simultaneously

learned exploiting a neural controller system with an attention mechanism

and memory to perform TensorLog’s operations.

SBR and LTN. Semantic–Based Regularization [34] (SBR) is a uni-

fied framework for inference and learning that is centered around the no-

tion of constraints and of parsimony principle. The SBR goal is to find the

smoothest functions satisfying the (possibly weighted) constraints. As pointed

out in [34], the given solution can be interpreted also in probabilistic terms

and directly compared with MLNs. In a similar direction, some recent works

by Serafini et al. [136,137] propose a framework called Logic Tensor Networks

(LTN) that integrates learning based on neural networks with reasoning using

first–order fuzzy logic, all implemented in TensorFlow. In particular, given

some data available in the form of real-valued vectors and a set of FOL clauses,

LTN converts these formulas according to a chosen t-conorm (e.g.  Lukasiewicz

t-conorm) and the grounding of predicates on data is defined as a generaliza-

tion of the neural tensor network [139]. Then, the truth value of any formula

can be determined by a neural network which first computes the grounding of

the literals contained in the clause, and then combines them using the specific
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t-conorm. Finally, the model parameters can be determined minimizing the

loss function corresponding to the satisfiability error of the formulas on the

available data.

In the following, we describe with more details some of the most relevant

statistical relational learning frameworks that have been already introduced

in this section, such as Markov Logic Networks and Probabilistic Soft Logic.

In addition, we describe Semantic–Based Regularization and Logic Tensor

Network, indeed the system we proposed in Ch. 6, called LYRICS, is inspired

by these two frameworks.

3.2 Markov Logic Networks

Markov logic networks (MLNs) [120] implement a probabilistic logic provid-

ing a general interface to integrate learning and probabilistic inference. In

particular, first–order logic is used to define boolean Markov Random Fields

(MRFs). Any logical formula (possibly with a weight) corresponds to a tem-

plate for a set of potentials having a higher score for such assignments that

most satisfy the formula. Inference and weight learning of the logical rules

involved in a learning process are carried out in MLNs, and an algorithm to

learn the set of rules from scratch if presented in [82]. MLNs incorporate

logical semantics defining feature functions into probability distributions to

create models that capture both the structure and the uncertainty in machine

learning tasks. MLNs deal with first–order logic knowledge base, however an

interesting expressiveness extension has been considered in [61], where MLNs

are extended to deal with statistical universal quantifiers.

In particular, MLNs rely on the notion of Markov Random Field (MRF).

An MRF is a probabilistic graphical model for the joint distribution of a set

of variables and it is composed of an undirected graph expressing the variable

dependencies and a set of potential functions. Each variable corresponds to a

node in the graph while a potential function (i.e. a non-negative function of

the state of the corresponding clique) is associated to any clique of the graph.

Definition 3.1 (MRF). Let x = (x1, . . . , xn) ∈ X be a vector of random

variables and let φ = (φ1, . . . , φm) be a vector of potentials, where each poten-
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tial φj assigns a real-valued score to any configuration of the variables. Given

ω = (ω1, . . . , ωm) a vector of real-valued weights, a Markov Random Field is

a probability distribution of the form:

P (x) =
1

Z
exp

 m∑
j=1

ωjφj(x)

 ,

where Z =
∫
X exp

(∑m
j=1 ωjφj(x

′)
)
dx′ is known as the partition function.

The integration with logic is carried out in MLNs as follows. Each poten-

tial function φj is associated to a first–order logic formula Fj in a knowledge

base KB. The KB can be seen as a set of constraints on the set of possible

assignment, the fewer formulas an assignment violates, the more probable it

is, while it has zero probability if it violates anyone formula. Each formula

has to be considered either as hard (infinite weight) or can be weighted to

penalize differently the assignments with respect to the formula satisfaction,

the higher the weight, the greater the difference in log probability between a

world that satisfies the formula and one that does not.

Definition 3.2 (MLN). A Markov logic network L is a set of pairs (Fj , ωj),

where Fj is a FOL formula and ωj ∈ R. Relatively to a set of constants

K = {k1, . . . , k|K|}, it defines an MRF ML,K as follows:

• ML,K contains one binary node for each possible grounding1 of each

predicate appearing in L. The value of the node is 1 if the ground atom

is true, and 0 otherwise.

• ML,K contains one feature for each possible grounding of each formula

Fj in L. The value of this feature is 1 if the ground formula is true, and

0 otherwise. The weight of the feature is the ωj associated with Fj in L.

Hence, an MLN can be viewed as a template for constructing MRFs vary-

ing different sets of constants. Each of these MRF is said a ground MRF

and the probability distribution over possible assignments x specified by the

1A grounding is an evaluation of a predicate on a certain element of a domain.
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ground Markov network ML,K is given by

P (x) =
1

Z
exp

 m∑
j=1

ωjφj(x)

 ,

where φj(x) is the number of true groundings of Fj in x.

MLNs allow formulas with conjunctions, as well as negative or infinite

weights. However, the full class of Markov logic networks does not admit any

known polynomial-time approximation schemata for MAP inference. That

is a reason why we decide to consider a KB made of logic clauses. A clause

Cj ∈ C is a disjunction of variable x or its negation ¬x, well-known as literals.

In particular for every j = 1, . . . ,m, φj(x) equal 1 if an assignment to the

variable x satisfies Cj and equal 0 otherwise. The weights of the potentials

express the probability that the clause holds according to the model. Let

I+
j , I

−
j ⊆ {1, . . . , n} be te set of indexes of the variables xi occurring in Cj .

Then Cj can be written as:

 ∨
i∈I+

j

xi

∨
 ∨
i∈I−j

¬xi

 . (3.1)

In particular, MLNs can be exploited to find a most probable assignment to

the variables, i.e. MAP inference. Given an MRF defined by clauses in C,

MAP inference can be defined as the following integer linear program:

arg max
x∈{0,1}n

∑
Cj∈C

ωJ min


∑
i∈I+

j

xi +
∑
i∈I−j

(1− xi), 1

 . (3.2)

While this program is generally intractable, some possible convex pro-

gramming relaxations have been considered in the literature, e.g. [7,8]. In the

next section, we will introduce a generalization of MRFs, called HL–MRFs,

that are defined on continuous variables instead of boolean variables as for

MLNs. Similar to MLNs, PSL allows to define templates for HL–MRFs.
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3.3 Probabilistic Soft Logic

A possible way to make the problem in equation (3.2) feasible relies on the

relaxation to continuous values for the random variables in x. In particular,

the formulas in the knowledge base C are converted with the  Lukasiewicz

logic semantics (see Table 2.2) instead of Boolean logic.  Lukasiewicz logic is a

continuous t-norm fuzzy logic and  L-propositions in x can take truth values

in [0, 1] instead of {0, 1}. This allows us to represent also vague concepts

together with their uncertainty. According to  Lukasiewicz logic clauses in C,

the problem in equation (3.2) can be reformulated as follows.

arg max
x∈[0,1]n

∑
Cj∈C

ωj min


∑
i∈I+

j

xi +
∑
i∈I−j

(1− xi), 1

 . (3.3)

Whenever a clause Cj is unsatisfied we can express its distance to satisfaction.

In particular the problem in equation (3.3) can be rewritten in the following

convex optimization problem:

arg min
x∈[0,1]n

∑
Cj∈C

ωj max

1−
∑
i∈I+

j

xi −
∑
i∈I−j

(1− xi), 0

 , (3.4)

with the set of unweighted logical rules (namely to be hard-satisfied) inte-

grated by linear constraints expressing their distance to satisfaction:

1−
∑
i∈I+

j

xi −
∑
i∈I−j

(1− xi) ≤ 0 .

We are now interested in defining a new kind of probabilistic graphical

models, called Hinge–Loss Markov Random Fields (HL–MRFs) [7,8], consid-

ering a hinge–loss energy function. First to define these models, we note that

any constraint distance to satisfaction corresponds to a hinge–loss function.

Since the logical clauses can be converted into piecewise-linear constraints

exploiting  Lukasiewicz logic, in the following we will consider a more general

form for the allowed constraints including arbitrary linear constraints. In

particular, the problem in equation (3.4) can be generalized to

arg min
y∈[0,1]n

∑
Cj∈C

ωj max {lj(y), 0} ,
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where lj denotes any linear function of continuous random variables y, each

term in the sum denotes its distance from the satisfaction of lj(y) ≤ 0 and

the weight ωj scales the distance from satisfaction of the corresponding con-

straint. We note that this definition applies to equality constraint as well,

being representable as pair of inequalities.

Definition 3.3. Let y = (y1, . . . , yn),x = (x1, . . . , xn′) be vector or variables

with joint domain D = [0, 1]n+n′ and φ = (φ1, . . . , φm) a vector of continuous

potentials such that

φj(y,x) = (max{lj(y,x), 0})pj , (3.5)

where lj is a linear function and pj ∈ {1, 2}. Let c = (c1, . . . , cr) be a vector

of linear constraints (representing hard-constraints) defining the feasible set:

D̃ = {(y,x) ∈D : ck(y,x) ≤ 0, ∀k ∈ {1, . . . , r}} .

Given a vector of nonnegative weights ω = (ω1, . . . , ωm), for any (y,x) ∈D,

a constrained hinge–loss energy function fω is defined as:

fω(y,x) =

m∑
j=1

ωjφj(y,x) .

We present the definition in a conditional form, however this gives a more

general representation, indeed the set of conditioning variables may be empty.

Definition 3.4 (HL–MRFs). A hinge-loss Markov random field P over ran-

dom variables y conditioned on random variables x is a probability density

defined as follows:

P (y|x) =

{
0 if (y,x) /∈ D̃

1
Z(ω,x) exp(−fω(y,x)) otherwise

,

where

Z(ω,x) =

∫
y|(y,x)∈D̃

exp(−fω(y,x))dy ,

and fω is a hinge-loss energy function.
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Whereas Markov Logic Networks define template for MRFs over boolean

variables, Probabilistic Soft Logic (PSL) can be seen as a templating language

for HL–MRFs, which are defined over continuous variables. In particular, a

PSL program defines a class of HL–MRFs that are parameterized by the input

data and where potential functions are associated to a set of templates corre-

sponding to logical constraint. In PSL two types of rules can be considered to

represent hinge–loss potential templates: logical rules, based on the mapping

from logical clauses to hinge–loss potentials and arithmetic rules providing

additional syntax to define constraints.

Definition 3.5. A PSL program is a set of rules, each of which is a template

for hinge–loss potentials or hard linear constraints. When a PSL program

is grounded to a certain domain, it produces a HL–MRF conditioned on any

specified observations.

The rules in a PSL program are written in a first–order logical language.

This means that the syntax of its logical rules involving constants, variables

and predicates can be described as in Sec. 2.1.1, however PSL does not ad-

mit FOL functions except the ones defined in the arithmetical rules. We

recall that the term grounding refers to the application of any predicate to

its arguments consisting of only constants symbols. With the variables in the

distribution grounded, each rule in the PSL program is applied to the inputs

and produces hinge–loss potentials or hard linear constraints to be added to

the HL–MRF. Any grounded logical rule has associated a potential as that

one in equation (3.5) that can be taken as linear or quadratic. The presence

of a weight determines if such rule has to be added to the HL–MRF with the

weight as parameter or to the set of constraints defining the feasible set. For

what concerns the logical expressiveness, PSL focuses on disjunctive clauses

with possible non-negative weights associated, that are converted using the

 Lukasiewicz t-conorm x ⊕ y = min{x + y, 1}, even if some expedients can

be considered to slightly increase its capability to deal with no-disjunctive

formulas and negative rule weights [7].

In the following, we will define how PSL can be exploited to define both

learning and inference machine learning tasks.
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MAP Inference

One of the tasks we may carry out in PSL is maximum a posteriori (MAP)

inference aiming at finding a most probable assignment to the free variables

y given observations x. Since in HL–MRFs, the partition function Z does

not depend on y, the exponential is maximized by minimizing its negated

argument and the MAP problem can be defined as:

arg max
y

P (y|x) ≡ arg min
y

fω(y,x) = arg min
y

ωT · φ(y,x)

such that: ck(y,x) ≤ 0, ∀k ∈ {1, . . . ,m}
(3.6)

MAP is a very fundamental task for PSL, indeed it allows the method to make

predictions. In addition, as expressed by equation (3.6) this can be formulated

as convex optimization and for instance some interior-point methods can be

exploited. However, we also notice that for PSL has also been considered a

new algorithm based on consensus optimization to scale to very large HL–

MRFs for exact MAP inference. In addition, several steps of MAP inference

can be required to perform the weight learning of the constraints that are

involved in the inference process, according to an iterative procedure.

Rule Weights Learning

A possible way to carry out weight learning in a HL–MRFs, is by maximizing

the likelihood of the training data. In particular, we can maximize the log–

likelihood of the training data via gradient descent, where the derivative with

respect to any rule weight ωj is expressed by

∂ logP (y|x)

∂ωj
= Eω [φj(y,x)]− φj(y,x) ,

where Eω denotes the expectation under the distribution defined by ω. The

gradient with respect to the j–th clause weight is null when the distance from

satisfaction of the j-th constraint on the training data yt corresponds to what

is predicted by the model: φj(yt) = Eω [φj(y,x)]. Computing the expected

value is intractable in a general setting and improving PSL weight learning is

an open research problem. A common solution is to approximate the expected

value with the most probable approximation (MAP solution) according to the



3.4. Semantic–Based Regularization 53

current weights: Eω [φj(y,x)] ≈ φj(yM ), where yM denotes the MAP solu-

tion at the current weights. Under this assumption, weight learning becomes

tractable, because inference to determine the most probable interpretation

corresponds to solving the convex optimization task as previously described.

3.4 Semantic–Based Regularization

Markov Logic Networks and Probabilistic Soft Logic provide a generic AI

interface layer for machine learning by implementing a probabilistic logic.

However, the integration with the underlying learning processes working on

the low-level sensorial data is shallow: a low-level learner is trained indepen-

dently, then frozen and stacked with the AI layer providing a higher-level

inference mechanism. In this section we present Semantic–Based Regular-

ization (SBR) [34], a language proposed to directly improve the underlying

learner, while also providing the higher-level integration with logic. A strong

connection between SBR and MLNs has also been pointed out in [34]. In par-

ticular, SBR can be seen as a MLN where the FOL formulas and node values

are replaced by their fuzzy generalization with the node values computed by

kernel machines. More generally, SBR is a unified framework for inference

and learning centered around the notion of constraint. On the one hand, the

framework can exploit different machine learning techniques to learn from

continuous feature-based representations some relations among patterns, e.g.

in case of Kernel Machines. On the other hand, SBR converts a set of first–

order logic (FOL) formulas expressing some prior knowledge on the task in a

set of functional constraints according to a fuzzy logic translation of formulas.

In particular, SBR builds a multi-layer architecture where at the first layer

kernel machines extract high-level feature representation of the input data.

Then a second layer takes as input the output of the kernel machines and

implements a fuzzy conversion of the FOL formulas in the knowledge base.

The resulting model is continuous and the semantic inference provided by the

logic rules can be back-propagated down to the kernel machines using any

gradient-based schema. In particular, the logical layer allows us to exploit

possible available unsupervised data improving the capacity of generalization

of the model and can be exploited to correct possible mistakes from the kernel
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machines layer. In the following we sketch how the conversion, from FOL to

fuzzy logic and then again to functional constraints, is carried out in SBR,

however we will provide more details on this general process in Sec. ??.

Let us consider a set of predicate functions P = {p1, . . . , pJ}, where each

pj with arity aj > 0 is grounded from the set Xj = Xj1, . . . ,Xjaj . In the

following, we indicate by pj(Xj) the set of possible groundings for the j–th

predicate and P(X ) = p1(X1)∪ . . .∪ pJ(XJ). Assuming all the predicates are

evaluated in [0, 1], then the truth degree of a formula containing an expression

E can be computed by fuzzy logic operators according to Table 2.2. The

universal and existential quantifiers over a variable xi are converted according

to the following expressions:

∀xiE
(
P(X )

)
=⇒ Φ∀

(
P(X )

)
= min
xi∈Xi

tE
(
P(X )

)
,

∃xiE
(
P(X )

)
=⇒ Φ∃

(
P(X )

)
= max
xi∈Xi

tE
(
P(X )

)
.

However, for implementation reasons, the universal quantifier is often trans-

lated as an arithmetic mean over a variable domain, namely as:

∀xiE
(
P(X )

)
=⇒ Φ∀

(
P(X )

)
=

1

|Xi|
∑
xi∈Xi

tE
(
P(X )

)
.

To summarize, the network encoded by SBR for a given KB can be defined

as in the following.

Definition 3.6 (SBR network). Let us consider a set of FOL formulas in

a knowledge base KB composed by predicates that are grounded by a set of

constants. In particular, we denote by x the feature vector associated to the

input variable x, and by fi the function implemented by a Kernel Machine to

approximate the i–th unknown predicate pi. SBR builds a multi-layer network

computing the fuzzy FOL approximation of KB, where the value fi(x) replaces

a grounded unknown predicate pi(x).

We consider a multi-task learning problem, where a set of J unknown

functions have to be estimated and another J ′ functions are known a priori,

where f = (f1, . . . , fJ , . . . , fJ+J ′) denotes the vector of such functions. We as-

sume we are given a set of FOL formulas ϕ1, . . . , ϕH with corresponding fuzzy

conversion Φ1, . . . ,ΦH . Then the formulas can be enforced to be satisfied by
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requiring 1− Φh(f) = 0, 0 ≤ Φh(f) ≤ 1, with h = 1, . . . ,H. The functionals

Φh can express a property of a single function or correlate multiple functions

in order to support the learning process. Assuming the function fj in f be-

longs to a certain functional space Hj2, we can also express a regularization

term according to the parsimony principle. Following the classical penalty

approach, the learning problem can be defined as constrained optimization

by requiring the minimization of the following cost function.

C[f ] =

J∑
j=1

||fj ||2Hj +

H∑
h=1

λh(1− Φh(f)) ,

where λh is the weight of the h–th constraint expressing which constraints

are more costly if violated. The constraints are generally enforced only over a

finite sample of input values. If we denote by f(X ) the set of all the possible

grounding of functions on the overall sample X , we get the following cost

function:

C[f(X )] =
J∑
j=1

||fj ||2Hj +
H∑
h=1

λh(1− Φh(f(X ))) . (3.7)

However, the cost function in equation (3.7) is in general not convex,

when the functional constraints ΦH can represent arbitrary FOL formulas

according to a t-norm fuzzy logic semantics to be chosen (validated), e.g.

Gödel,  Lukasiewicz or Product logic. The learning framework we will present

in the next chapters can be considered as an extension of SBR. However in

Sec. 4.1 we provide a fragment of  Lukasiewicz logic yielding convex functional

constraints. This means that the cost function in equation (3.7) becomes

tractable once the FOL formulas are converted with the  L–convex fragment.

3.5 Logic Tensor Networks

A Logic Tensor Network (LTN) [137] provides an integration between first–

order logic and learning based on neural networks, all implemented in Ten-

sorFlow. In particular, LTN exploits neural tensor networks (NTN) [139] to

2In particular, here Hj is assumed to be a Reproducing Kernel Hilbert Space (RKHS),

therefore any f ∈ H can be represented by a certain kernel function.
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evaluate all the predicates involved in the formulas on the training data (a col-

lection of real-valued features), while SBR generally exploits kernel machines.

Once all the grounded predicates are computed, these values are combined ac-

cording to a certain fuzzy logic and then aggregated in an overall loss function

defining the satisfiability error to be minimized.

Since LTN and SBR exploit t-norm fuzzy logics in the same way to define

an optimization problem, we only add some comments about the chosen ar-

chitecture of LTN to compute the grounded predicates, i.e. the neural tensor

network. More formally, let us consider a set of patterns v1, . . . , vm ∈ Rn

collected in a vector v ∈ Rnm and an m–ary predicate P . The grounding of

P , corresponding to the truth evaluation of P , can be defined as

G(P ) = σ
(
uTP tanh

(
vTW

[1:k]
P v + VPv +BP

))
, (3.8)

where W
[1:k]
P is a 3-D tensor in Rnm×nm×k, VP is a matrix in Rk×nm, BP ∈ Rk,

and σ denotes the sigmoid function. In particular, the grounding of P in

equation (3.8) is defined as a generalization of the neural tensor network, that

has already been shown to provide good results by exploiting simple logical

constraints in knowledge compilation [139]. It is worth noticing that, since a

NTN replaces a standard linear neural network layer with a bilinear tensor

layer, the input feature vectors can be combined across multiple dimensions.

Indeed, each tensor slice can be seen as mediating the relationship on the

input differently.
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Convex Logical Constraints

The theoretical results we present in this chapter may be exploited in different

learning settings, especially in contexts where some relational knowledge on

the task to be learned is available. As we already noticed in Sec. 2.4.4, a

learning process can be thought of as a constraint satisfaction problem, where

the constraints represent the knowledge about the functions to be learned. In

particular, in multi-task learning beside the supervised examples additional

information on the targets can be expressed as abstract knowledge by logical

constraints. Supervisions act as a special class of constraints providing pos-

itive as well as negative examples for the task, while it may be also useful

to express relationships among the unknown functions. For example, in a

classification problem, we may be interested in the satisfaction of a rule like

“any pattern classified as a cat has to be classified as an animal”, where cat

and animal have to be thought of as the membership functions of two classes

to learn. In such a sense, symbolic logic provides a natural way to express

factual and abstract knowledge about a problem by means of logical formulas

in a certain logic. Logical representations have been successfully employed in

various learning schemes from a long time, since they allow high-level repre-

sentations. In addition, we can exploit theorems and fundamental properties

of the chosen logic to get an advantage for the learning strategy.

Framework. Let us consider a set of predicates P = {p1, . . . , pJ}, all

collected in the vector p = (p1, . . . , pJ), with possibly different domains

Dj ⊆ Rnj , where nj ∈ N. Any predicate pj has associated a certain arity

aj ∈ N and its domain can be decomposed as Dj = Dj1× . . .×Djaj for oppor-

tune Dji. Given a certain x̄ ∈ Dj , the evaluation of pj on x̄, i.e. pj(x̄) ∈ [0, 1],

is said a grounding of pj , while pj(Dj) denotes the vector of all the groundings

of pj on its domain. For simplicity, we also write p(D) = (p1(D1), . . . , pJ(DJ))
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to indicate the vector of all the grounded predicates.

In a given learning problem, any predicate is implemented by a model

depending on parameters, like a kernel machine, a neural network, and so

on, restricted to map into a [0, 1]–value. Even if we do not mention function

symbols of FOL so far, the representation we are giving remains exactly the

same provided a set of functions F = {f1, . . . , fK} defined among the domains

of discourse and collected in the vector denoted by f . If function symbols are

taken into account, the models implementing them have to be indicated as

well. In an experimental setting, the predicates (and functions) never will be

evaluated on their whole domains, but just on a finite subset, the available

examples. In the following we denote by sets Xi the available samples for

the arguments of the involved predicates and by p(X ) the overall vector of

the groundings on the whole dataset. For what concerns the connectives

and quantifiers, they are threated using the fuzzy generalization of first–order

logic that was first proposed by Novak [114]. In particular, a t-norm fuzzy

logic (as defined in Sec. 2.2) generalizes Boolean logic to variables assuming

values in [0, 1] and is defined by its t-norm modeling the logical AND. Some

possible implementations of the connectives are reported in Table 2.2, while

we notice that the universal and existential quantifiers can be considered

as a fuzzy conjunction and disjunction, respectively. For the moment, we

suppose to convert the quantifiers as the minimum and maximum operations

that are common to any t-norm fuzzy logic, however in Sec. 4.2 we will

discuss in detail the general case of fuzzy aggregation functions (see also Sec.

2.3). For instance, consider a quantifier-free FOL formula ϕ(xi), with fuzzy

conversion Φ, depending on a certain variable xi ∈ Xi. In this case, the result

of quantifying xi in ϕ is converted according to the following rules.

∀xi ϕ(xi) =⇒ min
xi∈Xi

Φ(xi,f ,p)

∃xi ϕ(xi) =⇒ max
xi∈Xi

Φ(xi,f ,p)
(4.1)

When multiple quantified variables are present, the conversion is recursively

performed from the outer to the inner variables.

In a given learning problem, where all the knowledge consists in a set of

FOL formulas KB = {ϕ1, . . . , ϕH}, we suppose that some of the elements (in-

dividuals, functions or predicates) are unknown. The learning process aims at
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finding a good approximation of each unknown element, so that the estimated

values will satisfy the formulas for the input samples. Since the formulas in

KB are evaluated into [0, 1], and a formula is true if it is evaluated as 1, in

order to satisfy the constraints we may minimize the following loss function

L(X ,f ,p) =
H∑
h=1

λh
(
1− Φh(X ,f ,p)

)
(4.2)

where any λh is a weight for the h–th logical constraint and any formula

is indicated as depending on the whole dataset X for clarity. The weights

of the constraints may be either evaluated with respect to the performance

on the learning problem we want to solve or learned as well. Here, we only

remark that several strategies for learning the weights associated to the rules

have been considered in the literature [83, 85, 153] and that in general, it is

not a trivial task how to determine them. In general it has been considered

both methods to learn the structure of the rules and to learn their weight (or

confidence). A deeper analysis of this wide topic is beyond the scope of this

thesis, however we recommend [30] for a survey.

About Convexity Previously, we described how to convert FOL formu-

las into functional constraints yielding an overall cost functional. Minimizing

this loss allows us to learn the optimal values for the parameters of the mod-

els and this process can be tackled via several optimization techniques. One

desired property of a cost functional is to be convex. Indeed, non-convex

optimization is intractable in a general sense [141] and it can be efficiently

faced only when sub-optimal solutions are acceptable1. On the other hand,

convex optimization is very well understood and several algorithms are avail-

able to efficiently find optimal solutions. For example, Conjugate Gradient

Descent [104] is guaranteed to converge to an optimal solution in linear time

when the cost functional is convex. Many methods in machine learning ex-

plicitly aim at defining convex cost functionals by constraining the form of the

approximation. For example, training of support vector machines [21] corre-

sponds to solving a quadratic (with linear constraints) optimization problem.

1An optimal solution is a solution for which there are no other solutions providing a

lower cost. In convex optimization, any sub-optimal solution turns out to be an optimal

one, indeed any local minimum for a convex function is global as well.
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However, it is not obvious how to get a convex cost functional in general.

For instance, the definition of a convex cost functional is more challenging

when the learning task is more complex and general logic knowledge needs to

be exploited to express properties of the unknown function, like assumed by

statistical relational learning (SRL) methods. SRL learners includes methods

like Markov Logic Networks, however, inference in MLNs defines a non-convex

optimization problem, making the methodology impractical for large learning

problems. To overtake this limitation, probabilistic soft logic (PSL) relaxes

the learning task using fuzzy logic and restricts the knowledge base to clauses

with a specific form. Under these constraints inference corresponds to a con-

vex optimization problem, which can be solved even for large learning tasks.

However, the limitations in the form of the clauses prevents the application

of PSL to arbitrary learning tasks. In the next section, we study under which

conditions a general description of the knowledge base corresponds to a convex

optimization problem, when integrated into learning. This class of descrip-

tions is larger than that considered in PSL and similar learning methods,

making this theoretical result useful across a wide range of machine learning

applications.

4.1 The Convex  Lukasiewicz Fragment

Given a set of first–order logic constraints, equation 4.2 provides a method-

ology to define a cost functional that can be minimized to determine the un-

known objects involved in a certain learning problem. As we already pointed

out above, we are particularly interested in obtaining a loss function that is

convex and this strongly depends on the specific translation of the connec-

tives occurring in the formulas as well as on the chosen implementations of

the learnable functions. This is the reason why we investigate different ways

of translating the logical connectives. However, in this section we provide a

logical fragment of propositional  Lukasiewicz logic whose corresponding func-

tional constraints turn out to be convex and, as we will see in the next sections,

the fragment turns out to be not extendible if we want to preserve convexity.

Since the result is about logic, it applies to a wide class of learning settings

exploiting logical arguments. In particular, we discuss the general case of
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a multi-task learning problem, where we are interested in the integration of

prior knowledge with supervisions for learning the set P = {p1, . . . , pJ} of

predicates. For simplicity, in the remaining of this chapter we suppose we are

not given FOL functions, namely F = ∅.
Although in principle the logical constraints may be expressed by any

(fuzzy) logic, there are several reasons to work into the  Lukasiewicz frame

like other authors do [6, 136], especially to investigate convexity. For in-

stance, among the three fundamental fuzzy logics given by a continuous t-

norm ( Lukasiewicz, Gödel and Product), the  Lukasiewicz logic is the only one

providing an equivalent prenex normal form (i.e. quantifiers followed by a

quantifier-free part) and a continuous involutive negation (¬¬x = x) preserv-

ing the De Morgan laws. It is also worth to notice that functions correspond-

ing to Product t-norm are at most quasi concave, while the Gödel t-norm

is included in  Lukasiewicz logic, indeed it is represented by the  Lukasiewicz

weak conjunction. Finally, the McNaughton Theorem provides a functional

representation of  Lukasiewicz formulas by piecewise linear functions and then,

we can restrict the study of convexity to such kind of functions. Exploiting

this result, we are able to characterize the fragment of  Lukasiewicz formulas

corresponding to convex functional constraints. Formulas belonging to this

fragment are referred as simple  Lukasiewicz clausal forms in the literature

and, among others, the satisfiability problem for these formulas has shown to

have linear-time complexity [11].

4.1.1 Propositional  Lukasiewicz Logic

In Sec. 2.2 we briefly introduced the fuzzy logic realm and the fundamental

notions of t-norms and other fuzzy connectives. However, the results of this

chapter rely in particular on  Lukasiewicz logic  L whose main properties are

described in this section.  L is the fuzzy logic we get if we assume the t-

norm x⊗ y = max{0, x+ y − 1} as truth function for the conjunction on the

continuous values [0, 1]. It is worth noticing that, although for the learning

settings we exploit a first–order logic language, the objective functions are

evaluated on finite training sets and according to the following rules, FOL

formulas can be rewritten in an equivalent quantifier-free form. Indeed, for
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any predicate p occurring in formulas and evaluated on a sample Xp we get:

∀x pi(x) '
∧
a∈Xp

pi(a), ∃x pi(x) '
∨
a∈Xp

pi(a). (4.3)

This process can be carried out for every predicate in any FOL formula, until

we are given an equivalent propositional formula. As a result, we can exploit

stronger results from propositional theories still yielding FOL expressiveness.

Propositional  Lukasiewicz logic is sound and complete with respect to its

standard algebra on [0, 1] and the operations corresponding to  Lukasiewicz

connectives are reported in Table 4.1. The connectives ⊗,⊕ correspond to

Formula Operation

conjunctions

x⊗ y max{0, x+ y − 1}
x ∧ y min{x, y}

disjunctions

x⊕ y min{1, x+ y}
x ∨ y max{x, y}
implications and negation

x→ y min{1, 1− x+ y}
x↔ y 1− |x− y|
¬x 1− x

constants

0̄ 0

1̄ 1

Table 4.1:  Lukasiewicz connectives and their algebraic counterparts.

 Lukasiewicz t-norm and t-conorm. They are called strong connectives in op-

position to ∧,∨ that are called weak. Indeed, for all x, y ∈ [0, 1], the following

relations hold according to the order defined in equation (2.1):

x⊗ y ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.

The implication is the residuum of the t-norm and in  L it can be defined as

x→ y := ¬x⊕y, while the double implication as x↔ y := (x→ y)⊗(y → x).
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In addition, 0̄ ≡ x⊗¬x and 1̄ ≡ x⊕¬x for any x ∈ V, where V denotes the set

of all the propositional variables. It is worth to notice that in  L we have two

conjunctions and two disjunctions (a strong and a weak). Weak connectives

can be defined from the strong ones in every fuzzy logic (see equation 2.2).

Although the two conjunctions and the two disjunctions coincide on the crisp

values {0, 1}, they generalize quite differently on the continuous values [0, 1].

Boolean logic has several fundamental properties that allow us to easily

manipulate the formulas, however in the fuzzy logic realm things are slightly

more complicated. For instance, the De Morgan laws between both weak and

strong connectives hold, as well as the Distributive laws of strong over weak.

We only notice that the distributive property does not hold between strong

conjunction and strong disjunction, namely for some x, y, z ∈ [0, 1]

x⊕ (y ⊗ z) 6≡ (x⊕ y)⊗ (x⊕ z),

as shown in the following counter-example taking x = 0.1, y = z = 0.5:

min{1, x+ max{0, y + z − 1}} = 0.1

max{0,min{1, x+ y}+ min{1, x+ z} − 1} = 0.2.

In view of the learning procedure, formulated as an optimization problem,

we are interested in a functional representation of logical formulas. Indeed,

FOL will be translated into functional constraints for the objective functions,

as sketched in equation (4.2). Since the algebra of  L–formulas on n vari-

ables is isomorphic to the algebra of functions from [0, 1]n to [0, 1] as shown

in [114], we can translate formulas into functions according to equation (2.3).

The fundamental result about the functional representation of  L–formulas is

given by the already mentioned McNaughton Theorem. It states that, for the

propositional case, the functions corresponding to  Lukasiewicz formulas are

McNaughton functions defined on [0, 1]n, namely continuous piecewise linear

functions with integer coefficients. As a consequence, for every  L–formula

ϕ depending on n propositional variables, we can consider its corresponding

function fϕ : [0, 1]n → [0, 1], whose value on each point is exactly the eval-

uation of the formula with respect to the same variable assignment. Hence

we can investigate the convexity of such functions that, for the McNaughton

Theorem, are McNaughton functions.
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4.1.2 Convex McNaughton Functions

In  Lukasiewicz logic are definable different operations and we are interested

in the as large as possible set of  L–formulas corresponding to convex Mc-

Naughton functions. We start with the investigation of logical connectives

corresponding to operations that preserve concavity (convexity) aiming at

the identification of a whole concave (convex) fragment. However for clarity,

we first recall the definition of a concave (convex) function.

Definition 4.1 (Concave and Convex Functions). Let us consider a function

f : X ⊆ Rn → R, f is said to be

convex iff f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

concave iff f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

for any x, y ∈ X, λ ∈ [0, 1].

The concavity and convexity of  Lukasiewicz connectives have also been

studied in [96], in which are identified the  L–formulas that may be used to

get concave payoff functions. In our framework, formulas built up from the

concave fragment derive convex functional constraints and we also prove that

they coincide with the whole class of concave  Lukasiewicz functions.

Lemma 4.1. Let ϕ, ψ be two  L–formulas, then

1. fϕ is convex if and only if f¬ϕ is concave;

2. if fϕ, fψ are concave then the functions fϕ∧ψ and fϕ⊕ψ are concave;

3. if fϕ, fψ are convex then the functions fϕ∨ψ and fϕ⊗ψ are convex.

Proof. We provide a point-by-point proof of this Lemma.

1. This is obvious since the opposite of any convex function is a concave

one and vice versa.

2. If fϕ and fψ are concave, then for all x, y, λ ∈ [0, 1], fϕ∧ψ(λx + (1 −
λ)y) = min{fϕ(λx+ (1−λ)y), fψ(λx+ (1−λ)y)} ≥ min{λfϕ(x) + (1−
λ)fϕ(y), λfψ(x) + (1− λ)fψ(y)} ≥ λfϕ∧ψ(x) + (1− λ)fϕ∧ψ(y).

Moreover, by definition fϕ⊕ψ(x) = min{1, fϕ(x)+fψ(x)}, thus if fϕ⊕ψ(λx+
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(1−λ)y) = 1 then obviously it is greater or equal than λfϕ⊕ψ(x) + (1−
λ)fϕ⊕ψ(y). Otherwise fϕ⊕ψ = fϕ + fψ and sum preserves concavity

(and it preserves convexity too) so the thesis easily follows.

3. This point follows from 1) and 2) plus recalling that fϕ∨ψ = f¬(¬ϕ∧¬ψ)

and fϕ⊗ψ = f¬(¬ϕ⊕¬ψ).

As a consequence, the operations corresponding to the connectives ∧, ⊕
preserve concavity, while the ones corresponding to ∨, ⊗ preserve convex-

ity. In the following definition, we fix two different fragments of  Lukasiewicz

formulas which are built according to such connectives.

Definition 4.2. Let (∧,⊕)∗ and (⊗,∨)∗ be the smallest sets of formulas (up

to equivalence) such that:

• 0̄ ∈ (∧,⊕)∗ and 1̄ ∈ (⊗,∨)∗;

• if x ∈ V, then x,¬x ∈ (∧,⊕)∗ and x,¬x ∈ (⊗,∨)∗;

• if ϕ1, ϕ2 ∈ (∧,⊕)∗, then ϕ1 ∧ ϕ2, ϕ1 ⊕ ϕ2 ∈ (∧,⊕)∗;

• if ϕ1, ϕ2 ∈ (⊗,∨)∗, then ϕ1 ⊗ ϕ2, ϕ1 ∨ ϕ2 ∈ (⊗,∨)∗.

Anticipating the main result of this section, we refer to (∧,⊕)∗ as the

concave fragment and to (⊗,∨)∗ as the convex fragment of  Lukasiewicz logic.

Since 0̄, 1̄ correspond to constant functions and the literals correspond to pro-

jections or their negations, which are affine functions and hence both concave

and convex, the formulas inside a specific fragment are guaranteed to be con-

cave or convex respectively.

In order to prove that formulas in the concave (convex) fragment are

the only ones corresponding to concave (convex) McNaughton functions, the

following theorem plays a crucial role.

Theorem 4.1. Any convex (concave) piecewise linear function on Rn can be

expressed as a max (min) of a finite number of affine functions.

Proof. See e.g. Theorem 2.49 pag.68 of [123] for a proof of this result.
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This means that, for each n–ary convex McNaughton function f there

exist M1, . . . ,Mk ∈ Zn, q1, . . . , qk ∈ Z such that:

for all x ∈ [0, 1]n f(x) = max
i=1,··· ,k

(
M ′i · x+ qi

)
. (4.4)

On the other hand, every concave McNaughton function can be expressed as

the minimum of a finite number of affine functions. We only mention that the

coefficients of the affine functions are constructively determined by the shape

of the considered formula.

Example 4.1. Let us consider ϕ = ((x∧ y)⊕¬y⊕ z)∧¬z, then ϕ ∈ (∧,⊕)∗

and it is equivalent to (x ⊕ ¬y ⊕ z) ∧ (y ⊕ ¬y ⊕ z) ∧ ¬z. From this latter

expression, we get:

fϕ(x, y, z) = min{1, x− y + z + 1, 1− z}.

Finally, exploiting equation (4.4) and thanks to Lemma 4.1, we can prove

that (∧,⊕)∗ and (⊗,∨)∗ coincide with the sets of all  L–formulas whose cor-

responding McNaughton functions are concave and convex respectively.

Proposition 4.1. Let fϕ : [0, 1]n → [0, 1] be a McNaughton function. Then,

1. fϕ is concave if and only if ϕ ∈ (∧,⊕)∗;

2. fϕ is convex if and only if ϕ ∈ (⊗,∨)∗.

Proof. First of all we note that, as a consequence of Lemma 4.1, if ϕ be-

longs to the concave fragment, then fϕ is a concave function. Indeed, all the

connectives occurring in ϕ correspond to operations that preserve concavity

and literals and constants correspond to affine functions. The same argument

holds if the formula belongs to the convex fragment.

On the other hand, let us suppose that fϕ is a concave piecewise linear

function, hence there exist some elements aij , bi ∈ Z for i = 1, . . . ,m and

j = 1, . . . , n, such that:

fϕ(x) =
m

min
i=1

ai1x1 + . . .+ ainxn + bi, x ∈ [0, 1]n.

If we set pi(x) = ai1x1 + . . . + ainxn + bi for i = 1, . . . ,m, our claim follows

provided every pi corresponds to a formula in (∧,⊕)∗. Indeed the operation of
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minimum is exactly performed by the connective ∧. Let us fix i ∈ {1, . . . ,m},
then we can write

pi(x) =
∑
j∈Pi

aijxj +
∑
j∈Ni

aijxj + bi,

where Pi = {j ≤ n : aij > 0} and Ni = {j ≤ n : aij < 0}. For short,

given any ψ ∈  L, we write aψ with the meaning of
⊕a

i=1 ψ or 0̄, if a > 0

or a = 0 respectively. Therefore, we can consider the following formula as

corresponding to the function pi:

ϕi =
⊕
j∈Pi

aijxj ⊕
⊕
j∈Ni

|aij |¬xj ⊕ qi1̄.

Indeed the first strong disjunction corresponds to all the positive monomials of

pi. The second one corresponds to all the negative monomials of pi, but it also

introduces the quantity
∑

j∈Ni |aij |. Finally qi = bi−
∑

j∈Ni |aij |, with qi ≥ 0

since pi(x) ≥ 0 for all x ∈ [0, 1]n and in particular pi(x̄) = bi−
∑

j∈Ni |aij | ≥ 0

where x̄ is the vector with 0 in positive and 1 in negative monomial positions

respectively. The overall formula can be written as ϕ = ϕ1 ∧ . . . ∧ ϕm.

Summing up, the largest fragments of  Lukasiewicz logic whose McNaughton

functions are either concave or convex are determined. This result is very gen-

eral because it can be applied to different learning settings, where the use of

the fragment brings benefits to the solution. In particular, in Chap. 5, we

show how to exploit this result into kernel machines, collective classification

and Probabilistic Soft Logic theories. Finally, it is worth to notice that in

the literature, logical constraints are often initially expressed in boolean form

and then fuzzified. Since the fragments we define contain both a conjunction

and a disjunction which are coherent with boolean connectives on the crisp

values, in principle one can almost always translate boolean formulas into con-

vex  Lukasiewicz constraints. However, as we sketch in the next subsection,

any choice for this translation can slightly modify the expressiveness of the

formulas we are dealing with.

4.1.3 Notes on Expressiveness

As already noticed, in practical problems we are often given a set of boolean

formulas. Hence we have to decide a suitable way of translating them into
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the language of fuzzy logics, and in particular  Lukasiewicz logic, preserving

their initial intention. The majority of authors [13, 34, 137] convert boolean

conjunction with the t-norm and the disjunction with the t-conorm, namely

with the pair (⊗,⊕). It is worth noticing that Proposition 4.1 characterizes

the concave and the convex formulas in  L, but in general it does not provide an

effective way to embed any boolean formula into a specific fragment. However,

this is always guaranteed by making use of either the concave or the convex

connectives if we consider any boolean formula without implication and with

negation on at most literals. In particular, given any boolean formula, we

can always rewrite it into a conjunctive normal form (CNF) and then we can

apply the following two translations to the conjunctions and disjunctions to

fall into the concave or the convex fragment respectively:

(concave)
n∧
i=1

m⊕
j=1

(¬)lij , (convex)
n⊗
i=1

m∨
j=1

(¬)lij . (4.5)

Actually, there are several possibilities to translate the boolean connectives

into the  Lukasiewicz ones, where we have two conjunctions and two disjunc-

tions. Even if the weak and the strong operations coincide on the crisp values

{0, 1}, the way they generalize on continuous values [0, 1] determines different

semantics for the resulting formulas. In the following we show some examples

to compare possible representations.

Example 4.2 (Distributivity). In general, we can lose consistency on what we

have to represent if we manipulate the boolean expressions before translating

them into fuzzy terms. For instance, in boolean logic, the formulas x∧ (y ∨ z)
and (x ∧ y) ∨ (x ∧ z) are equivalent. However, if we translate them with the

fragment (⊗,∨)∗ the equivalence still holds, whereas in general the same is

not true with the pair (⊗,⊕).

A well-studied class of formulas is given by the Horn clauses, i.e. formulas

with a propositional variable implied by a conjunction of propositional vari-

ables. They are very common in the literature since they are quite expressive

and easy to be managed.

Example 4.3 (Horn Clauses). Given a Horn clause, if we translate the con-

junction with the t-norm, then we get:

(x1 ⊗ . . .⊗ xm)→ y ≡ (¬x1 ⊕ . . .⊕ ¬xm ⊕ y) ∈ (∧,⊕)∗,
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namely the class of Horn clauses translated into  L with ⊗ is strictly contained

in the concave fragment. Indeed, the following formulas are in (∧,⊕)∗ and do

not correspond to Horn clauses:

x ∧ y, x⊕ (y ∧ z), x ∧ (x→ y), (x⊗ y)→ (x ∧ z).

Finally in the rest of this section, we discuss some examples representing

well-known rules in learning from logical constraints.

Example 4.4 (Manifold Regularization). Manifold regularization assumes

that a given binary predicate R(a, b) states when two objects a and b belong to

the same manifold, requiring that the value of a predicate P should be consis-

tent when evaluated on the two elements. This condition can be expressed by

the following boolean formula:

R(a, b)→ (P (a)↔ P (b)), (4.6)

where P (a)↔ P (b) ≡ (P (a)→ P (b)) ∧ (P (b)→ P (a)).

Since for all x, y ∈ [0, 1]

min{1, 1− x+ y, 1− y + x} = max{0,min{1− x+ y, 1− y + x}}

then, (x → y) ∧ (y → x) ≡ (x → y) ⊗ (y → x) and in this case each choice

we make between ∧ and ⊗ yields an equivalent result. In particular, if we use

the weak conjunction we can immediately see that such a formula belongs to

the concave fragment.

Example 4.5 (Mutually Exclusive Classes). One can ask, for instance in

a collective classification problem, that a certain pattern belongs to one and

only one of two (or more) classes whose membership functions are given by

two predicates P,Q. For short we indicate with x and y the two grounded

predicates corresponding to the class assignation to the same object a, namely

x := P (a), y := Q(a). For instance, by means of x ∨ y we can express

that a belongs to at least one of the two classes and by (x ∧ ¬y) ∨ (¬x ∧ y)

that a belongs to exactly one class. Such formulas can be translated into  L

in different ways. However it seems that some choices are more accurate

with respect to the initial intent of the formula. For instance, if we translate

x∨ y with x⊕ y, then the formula will be satisfied for any pair of [0, 1]–values
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summing to 1. Therefore in this case, it can be more useful to translate it with

the weak disjunction that corresponds to the maximum. For what concerns the

exclusive disjunction (xor), it can be fairly represented in  Lukasiewicz logic

by (x⊗ ¬y) ∨ (¬x⊗ y) that belongs to the convex fragment.

4.2 Fuzzy Aggregation and Loss Functions

Finally in this section, we consider more general ways to aggregate and en-

force the satisfaction of formulas into a learning problem. We already observed

(see equation (4.1)) how quantified FOL formulas can be converted into fuzzy

logic. In particular, the universal and existential quantifiers can be mapped

into the min and max operations respectively, that are definable in any fuzzy

logic. However, a quantifier can be simply seen as a way to aggregate all

the possible groundings of a predicate variable that, in turn, are [0, 1]–values.

Beside the studies on how to aggregate a finite number of real numbers into

a single number by generalized convex functions [118], here we are interested

in the connection between generated archimedean t-norms and mapping to a

certain loss function. In fact, several aggregation functions can be chosen to

implement the quantifiers, e.g. we could choose the arithmetic mean for the

universal quantifier. Even if this choice may yield some learning benefits, it

has no direct justification inside a logic theory. Moreover it does not suggest

how to map the functional translation of the formula to a constraint. The

satisfaction of a formula ϕ may be enforced by the constraint expressed in

equation (4.2), namely minimizing 1− fϕ, where fϕ represents the functional

conversion of ϕ. However in principle, one may satisfy ϕ minimizing a de-

creasing mapping d(fϕ), where d : [0, 1] → [0,+∞] with d(1) = 0 expressing

the cost of violating the formula ϕ. This is the reason why, we investigated

the mapping of formulas into constraints by means of generated t-norm fuzzy

logics, and we exploited the same additive generator of the t-norm to map the

formula to be satisfied into the functional constraints to be minimized.

4.2.1 Loss Functions by T-Norms Generators

We already introduced a possible way to convert FOL formulas into functional

constraints by means of equations (4.1) and (4.2). In particular, this approach
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allows us to convert  Lukasiewicz formulas into convex functional constraints

corresponding to the  L negation of such formulas. However, here we explore

a different perspective.

Example 4.6. Given two predicates p, q defined on a same domain X , the

role of the quantifiers on some formulas have to be interpreted as follows,

∀x p(x) ∨ q(x) ' (p(x1) ∨ q(x1)) AND . . .AND (p(xN ) ∨ q(xN ))

∃x p(x) ∧ ¬q(x) ' (p(x1) ∧ ¬q(x1)) OR . . .OR (p(xN ) ∧ ¬q(xN ))

where X = {x1, . . . , xN} denotes the set of the available samples for p and q.

Since the universal quantifier can be seen as a general AND, we are in-

terested in converting this AND with a generated archimedean t-norm. For

short, we omit the case of the universal quantifier, however it can be managed

in a similar way.

Given a certain formula ϕ(x) depending on a variable x that ranges in

the set X and its corresponding functional translation Φ(x,f ,p) evaluated on

each x ∈ X , we can consider the conversion of universal quantifiers by means

of a t-norm T as well as existential quantifiers by t-conorms. For instance,

∀xϕ(x) =⇒ Φ(X ,f ,p) = g−1

(
min{g(0+),

∑
x∈X

g
(
Φ(x,f ,p)

)
}

)
, (4.7)

where g is an additive generator of the t-norm T corresponding to the universal

quantifier. Since any generator function is decreasing, in order to satisfy

∀xϕ(x) we can enforce the minimization of g applied to Φ(X ,f ,p) in equation

(4.7). Therefore, we get the following term to minimize:

min{g(0+),
∑
x∈X

g
(
Φ(x,f ,p)

)
} ,

and in case the t-norm T is strict, (namely g(0+) = +∞) this simplifies in

the minimization of ∑
x∈X

g
(
Φ(x,f ,p)

)
. (4.8)
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For instance, if we take g(x) = −log(x) from (4.8) we get

−
∑
x∈X

log
(
Φ(x,f ,p)

)
, (4.9)

that corresponds to a generalization to generic fuzzy logic expressions of the

cross–entropy loss. We will discuss this choice with more details in Sec. 6.4.

For what concerns the convexity of expressions obtained composing more

functions, it is a well-known result that given a concave function h and a

convex non-increasing function g defined over a univariate domain, then we

have that f(x) = g(h(x)) is convex. As a consequence, we get the following

result.

Corollary 4.1. If g is a convex strict generator function and Φ(X ,f ,p) is

concave, then the function in equation (4.8) expressing the constraint corre-

sponding to a certain formula is convex.

An example of an application case of the above mentioned result is given

considering e.g. g(x) = −log(x) or g(x) = 1−x and Φ built from the concave

 Lukasiewicz framgent (see Definition 4.2).

As we already pointed out in Sec. 2.3, if g is an additive generator for a t-

norm T , then the residual implication and the biresidum with respect to T are

given by equations (2.9) and (2.10). In particular, if p, q are two predicates

functions and assuming T is strict for simplicity, the following universally

closed formulas are converted as:

∀x p(x) =⇒ g−1
(∑

x

g(p(x))
)

∀x p(x)→ q(x) =⇒ g−1
(∑

x

max(0, g(q(x))− g(p(x))
)

(4.10)

∀x p(x)↔ q(x) =⇒ g−1
(∑

x

|g(p(x))− g(q(x))|
)

Obviously in case of more complex formulas, some occurrences of the generator
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may be simplified, as for instance the formula ∀x (p(x) ∧ q(x))→ r(x)

g−1


∑
x

g

g
−1

max

0, g(r(x))− g

g−1(g(p(x)) + g(q(x)))︸ ︷︷ ︸
conjunction





︸ ︷︷ ︸
implication




︸ ︷︷ ︸

quantifier

,

can be reduced to the simpler expression:

g−1

(∑
x

max {0, g(r(x))− g(p(x))− g(q(x))}

)
.

Further, one may think to consider customized loss components that are more

suitable for a certain learning problem or exploiting the described construction

to get already known machine learning loss, as in equation (4.9).

Example 4.7. For instance, if g(x) = 1
x − 1 with corresponding t-norm

T (x, y) = xy
x+y−xy , the functional constraint (4.8) that is obtained applying

g to the formula ∀x p(x)→ q(x) is given by∑
x

max

{
0,

1

q(x)
− 1

p(x)

}
.

Example 4.8. If g(x) = 1 − x2 (note that its generated t-norm is nilpotent

in this case, indeed g(0) = 1) the corresponding constraint is given by

min(1,
∑
x

max(0, (p(x))2 − (q(x))2)) .

In the next chapters, we will see some cases of interest exploiting the

theoretical results presented in this chapter. For instance, the definition of

the concave and convex fragment of  Lukasiewicz logic are exploited in Ch. 5

to extend some classical machine learning schema still preserving convexity.

Arbitrary construction of loss functions by means of fuzzy aggregation func-

tions and additive generators are instead exploited in Ch. 6, where logical

constraints are mapped by a chosen generator into components of an overall

loss function.





Chapter 5

Learning with Convex Logical Constraints

In this chapter we discuss some learning frameworks where we are able to get

some theoretical insights when exploiting the convex  Lukasiewicz fragment.

In the big picture, we are interested in the learning of a set of real-valued

functions P = {p(aj)
j : Rnj → R, j ∈ NJ1, nj , aj > 0}, denoting logical

predicates, provided with some factual (supervisions) and abstract knowledge

(logical formulas) on them. Throughout this chapter, each objective function

p
(aj)
j is supposed to be evaluated on a supervised training set Lj and an

unsupervised training set Uj , where:

Lj = {(xjl , y
j
l ) : xjl ∈ R

nj , yjl ∈ {−1, 1}, l ∈ Nlj} ,

Uj = {xju ∈ Rnj : u ∈ Nuj} .

In addition, we define Sj = Uj ∪ L ′
j (where L ′

j = {xjl : (xjl , y
j
l ) ∈ Lj})

as the set containing the whole sample of points on which the j–th objective

is evaluated. For any j, the logical constraints related to the j–th predicate

will be enforced on the set Sj . Since any quantifier is applied to a specific

argument of a predicate, it can be useful to decompose by components (with

respect to the arity aj) the range of vectors xjs ∈ Sj , namely we consider

Sj = Sj1 × . . .×Sjaj so that each Sjk is the domain of the k–th argument

of the predicate p
(aj)
j . In the following, we indicate with sj the cardinality of

Sj , S = s1 + . . .+sJ and U = u1 + . . .+uJ . Further, we suppose we are given

a set of  Lukasiewicz FOL formulas, KB = {ϕh : h ∈ NH} whose predicates

are functions in P and without any function symbol, i.e. F = ∅. With respect

to the notation, in the following we adopt some abbreviations. For instance,

we will omit the superscript j on points, the arity on predicates and we write

1For short, Nn = {1, 2, . . . , n} denotes the set of the first n > 0 natural numbers.
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pjl instead of pj(xl). In addition, we write p = (p1, . . . , pJ) : Rn → RJ , where

n = n1 + . . .+ nJ , for the overall objective function.

5.1 Kernel Machines

Kernel methods are a class of algorithms for pattern analysis that exploit

high-dimensional feature representation. These methods are widely studied,

also in the particular case of structured data [46] of which logical knowledge

may be seen as a special instance. In Sec. 2.4.3 we already introduced the

well-known Support Vector Machines (SVMs), one of the mostly employed

kernel machines algorithm. Basically, SVM is a supervised learning model

aiming at separate a set of points that belong to different classes with an as

large as possible margin. One of the advantages of SVMs is that learning can

be efficiently solved by quadratic optimization algorithms both in the primal

and in the dual space. In the following, we show how to extend its classi-

cal formulation to include logical constraints still preserving the quadratic

programming schema. From now on in this section, we assume that each ob-

jective function pj belongs to some Reproducing Kernel Hilbert Space (RKHS)

Hj . By means of the reproducing property, as shown in equation (5.1), pj can

be represented as an expansion of the kernel function kj ∈ Hj ,

pj(x) =

sj∑
s=1

αjs · kj(x, xs) (5.1)

where αjs ∈ R are the model parameters for the learned solution and xs ∈ S.

We note that in an experimental setting, the choice of the kernel is empirically

validated. However, typical choices fall into linear, polynomial or gaussian

kernels.

5.1.1 SVMs with Logical Constraints

In the following, according to the learning from constraints paradigm, we start

describing the constraints involved in the learning problem. After that, it will

be straightforward to formulate the overall loss function to be optimized.

As we will see, the choice of the concave fragment to translate the logical
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formulas into functional constraints will guarantee to deal with convex (even

linear) constraints.

Constraints

In the considered learning problem, each learnable task function has to be

treated as a predicate subject to both supervisions and the satisfaction of

logical knowledge. Hence, the constraints may be divided into the following

three categories.

• Consistency Constraints derive from the fact that predicate functions

have to be evaluated into [0, 1] in order to guarantee the consistency of

the FOL formula evaluations.

• Pointwise constraints enforce the behavior of the task functions on the

supervised examples provided in the training set.

• Logical constraints establish some abstract relations that must hold be-

tween the predicates by means of FOL formulas.

Consistency Constraints The function p represents a tuple of logical

predicates. In principle, when we write any pj according to equation (5.1),

we have no guarantees pj is evaluated in [0, 1]. In previous works (e.g. [33])

this is achieved applying a sigmoid function to predicates before enforcing the

logical constraints. Since in general the sigmoid does not preserve convexity

(as well as concavity), we opt for a different strategy. In order to guarantee

the consistency in the definition of logical constraints, for every j ∈ NJ , we

add the following hard constraints:

0 ≤ pj(xs) ≤ 1, for every xs ∈ Sj . (5.2)

Pointwise Constraints For any j ∈ NJ , the supervised set Lj provides

pairs of supervised examples (xl, yl) for pj . If yl = 1 then xl belongs to the

true class, so we would like to have pj(xl) ≥ 1, whereas if yl = −1 then xl
belongs to the false class and we would like to have pj(xl) ≤ 0. In order to

avoid the feasible set of solutions for the optimization problem to be empty,

we allow such constraints to be partially violated. Summing up, for every
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j ∈ NJ , supervisions are enforced requiring the satisfaction of soft constraints

according to the classical approach with hinge loss functions:

yl(2pj(xl)− 1) ≥ 1− 2ξjl with ξjl ≥ 0, for every xl ∈ Lj , (5.3)

where the slack variable ξjl denotes the smallest nonnegative number satisfy-

ing the constraint. Pointwise constraints are slightly modified with respect to

the usual formulation, since the supervisions are labelled with values yl = ±1

whereas the predicates are supposed to assume 0–1 values denoting classical

logic truth values.

Logical Constraints Logical constraints arise from the knowledge base

KB that is supposed to be a collection of FOL  L–formulas. Without loss

of generality for the  Lukasiewicz logic case, they may be assumed to be in

prenex normal form. According to equation (4.3) each quantified formula can

be replaced with a propositional one once all the predicates are grounded

on their domains of evaluation. We denote the set of such propositionalized

formulas, where the grounded predicates are considered as [0, 1] propositional

variables, by KB′. For what concerns logical constraints, every pj is supposed

to be evaluated on the set Sj . Since the formulas in KB′ depend, in general,

on all the possible groundings of their occurring predicates, for j ∈ NJ it is

useful to indicate with p̄j the vector of all groundings of pj in Sj , namely

p̄j = (pj1, . . . , pjsj ) and p̄ = (p̄1, . . . , p̄J) ∈ [0, 1]S .

Example 5.1. Let us consider P = {p1, p2} and KB = {ϕ1, ϕ2} with:

ϕ1 : ∀x∃y(p1(x)→ p2(x, y)), ϕ2 : ∀x(p1(x) ∨ ¬p1(x)).

Given S11 = S21 = {x1, x2} and S22 = {y1, y2}, we have S1 = S11 and

S2 = {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}, hence the grounding vectors for the

two predicates are

p̄1 = (p11, p12) , p̄2 = (p21, p22, p23, p24) .

Therefore, we get KB′ = {ϕ′1, ϕ′2} where ϕ′1 and ϕ′2 are respectively:

ϕ′1 : [(p11 → p21) ∨ (p11 → p22)] ∧ [(p12 → p23) ∨ (p12 → p24)] ,

ϕ′2 : (p11 ∨ ¬p11) ∧ (p12 ∨ ¬p12) .
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Formulas in KB′ are now expressed in propositional  Lukasiewicz logic  L

and so we can use all the results reported in the previous chapter. In par-

ticular, every n − −ary formula ϕ is isomorphic to a McNaughton function

fϕ : [0, 1]n → [0, 1]. For the sake of simplicity, we indicate by fh the function

corresponding to the propositional formula ϕ′h. In addition to make the no-

tation as uniform as possible, although any formula will depend in general on

only few predicates, we write fh = fh(p̄) as, in general, they depend on the

grounding vector of all the predicates.

With the introduced notation, we are now ready to express the logical

constraints exploiting equation (4.2)2. Also in this case, a new slack variable

is introduced for each formula to allow the soft violation of the constraints.

Hence, for every h ∈ NH , we enforce the soft satisfaction of:

1− fh(p̄) ≤ ξh with ξh ≥ 0 . (5.4)

If KB′ ⊆ (∧,⊕)∗, namely if the formulas are built from the concave fragment,

then fh is a concave function and 1− fh is the convex function corresponding

to the formula ¬ϕh. It is worth to notice that the considered McNaughton

functions are convex in the space of grounded predicates, however the formulas

in KB′ basically depend on the parameters which determine each predicate

function. Since we suppose that each objective function belongs to a certain

RKHS, other than the representation in equation (5.1), we can write

pj(x) = ω′j · φj(x) + bj , (5.5)

where φj : Rnj → RNj is a feature map determined by the j–th kernel function

kj of Hj , ωj ∈ RNj is said the j–th weight vector and bj ∈ R the bias. If we

assume to evaluate the predicates only on the known fixed training set and

we set ω̂j = (ω′j , bj)
′, then the values of predicates are totally determined by

the matrix ω̂ = (ω̂1, . . . , ω̂J). This entails that the formulas will be evaluated

by composition on the weight space and therefore we need to guarantee the

convexity of McNaughton functions on this space. Thanks to the linear form

assumed by each objective function in the feature space (in general Nj >> nj
or even Nj may be infinite), the following lemma applies and guarantees

convexity of the functional logical constraints in the weight space too.

2This corresponds to apply the  Lukasiewicz logic generator g(x) = 1− x to fh(p̄) (that

corresponds to a  L–formula), as also proposed in Sec. 4.2.1.
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Lemma 5.1. Let f : Y ⊆ Rm → R be a concave (convex) function and

g : X ⊆ Rd → Y such that g(x) = Ax + b with A ∈ Rm,d, b ∈ Rm. Then the

function h : X → R defined by h = f ◦ g is concave (convex) in X.

Summing up, if we consider only formulas that belong to the concave

fragment we can embed the logical constraints into the overall loss function

by means of convex functional constraints. However, since we suppose to

deal with  Lukasiewicz formulas, any functional constraint is a McNaughton

function as well, and in particular a piecewise linear function. Therefore

according to equation (4.4), for every h ∈ NH , we have :

1− fh(p̄) = max
i=1,··· ,Ih

(
Mh
i · p̄ + qhi

)
≤ ξh

if and only if

Mh
i · p̄+ qhi ≤ ξh for all i ∈ NIh , (5.6)

where Mh
i ∈ R1,S and qhi ∈ R are integer coefficients determined by the

structure of the formula ¬ϕ′h. This means that for every h ∈ NH , we can

consider the Ih logical constraints expressed by (5.6) in place of (5.4). Even if

the number of constraints is increased, each of them is now an affine function,

so we can deal with a quadratic programming problem. It is worth to notice

that, since the distributive law holds in any fragment for the strong connective

with respect to the weak one, we can easily rewrite any concave formula as

a weak conjunction of strong disjunctions as well as any convex formula as a

weak disjunction of strong conjunctions. Thereafter is straightforward to get

the integer coefficients of the affine functions.

For instance, given ϕ ∈ (∧,⊕)∗ with ϕ : (x1 ⊕ ¬x2) ∧ (x1 ⊕ x2), we have:

fϕ = min{1, x1 − x2 + 1, x1 + x2} .

Optimization Problem

In order to learn the objective functions we have to find the optimal values

for the weight matrix. As in SVMs, we look for a solution maximizing the

margin between the false and the true class while satisfying the constraints.

Functional logical constraints are expressed by their linear counterparts (equa-

tion (5.6)), such that we can formulate the multi-task learning problem as

quadratic optimization both in the primal and in the dual space.
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Primal Problem (5.7)

min
ω,ξ

1

2

∑
j∈NJ

||ωj ||2 + C1

∑
j∈NJ
l∈Nlj

ξjl + C2

∑
h∈NH

ξh subject to:

yl(2pj(xl)− 1) ≥ 1− 2ξjl , ξjl ≥ 0,

Mh
i · p̄+ qhi ≤ ξh, ξh ≥ 0,

0 ≤ pj(xs) ≤ 1,

where j ∈ NJ , l ∈ Nlj , (xl, yl) ∈ Lj , h ∈ NH , i ∈ NIh , s ∈ Nsj , xs ∈ Sj and

C1, C2 are positive real parameters to modulate the degree of satisfaction of

the constraints and determined by cross validation.

Remark 5.1. The constants C1 and C2 express the (possibly different) degree

of satisfaction for the pointwise and logical constraints respectively. It is worth

noticing that the supervisions can be seen as atomic logical constraints or their

negation. However we decided to keep them separated in this formulation

both for clarity with respect to the usual SVM literature and for considering

different values for the constants. In principle one can weigh any constraint

differently. However in this case, we suppose to have the same degree of belief

on all the supervisions as well as on all the logical formulas.

The primal problem (5.7) can be reformulated as the minimization of a

Lagrangian function, obtaining

L(ω̂, ξ, λ, µ, η) =
1

2

J∑
j=1

||ωj ||2 + C1

J∑
j=1

lj∑
l=1

ξjl + C2

H∑
h=1

ξh −
J∑
j=1

lj∑
l=1

µjlξjl+

−
J∑
j=1

lj∑
l=1

λjl(yl(2pj(xl)−1)−1+2ξjl)−
H∑
h=1

Ih∑
i=1

λhi(ξh−M
h
i ·p̄−qhi )−

H∑
h=1

µhξh+

−
J∑
j=1

sj∑
s=1

ηjspj(xs)−
J∑
j=1

sj∑
s=1

η̄js(1− pj(xs)) , (5.8)
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with the KKT–conditions, for all j ∈ NJ , l ∈ Nlj , h ∈ NH , i ∈ NIh , s ∈ Nsj :

ξjl ≥ 0, ξh ≥ 0, λjl ≥ 0, µjl ≥ 0, λhi ≥ 0, µh ≥ 0, ηjs ≥ 0, η̄js ≥ 0,

λjl(yl(2pj(xl)− 1)− 1 + 2ξjl) = 0, µjlξjl = 0, λhi(ξh −Mh
i · p̄− qhi ) = 0,

µhξh = 0, ηjspj(xs) = 0, η̄js(1− pj(xs)) = 0, yl(2pj(xl)− 1)− 1 + 2ξjl ≥ 0,

ξh −Mh
i · p̄− qhi ≥ 0, pj(xs) ≥ 0, 1− pj(xs) ≥ 0.

The problem can be solved both in the primal and dual space, because con-

vexity guarantees that the KKT–conditions are also sufficient and the duality

gap is null. However, to derive the dual space formulation we apply the null

gradient condition to the derivatives of L with respect to every ωj , bj , ξjl , ξh.

∇ωjL = ωj−2
∑
l

λjlylφj(xl)+
∑
h,i

λhi
∑
u

Mh
i,uφj(xu)−

∑
s

(ηjs−η̄js)φj(xs) = 0 ;

∂L
∂bj

= −2
∑

l λjlyl +
∑

h,i λhi
∑

uM
h
i,u −

∑
s(ηjs − η̄js) = 0 ;

∂L
∂ξjl

= C1 − 2λjl − µjl = 0 ;

∂L
∂ξh

= C2 −
∑

i λhi − µh = 0 .

Hence if we substitute, we get:

θ(λ, η) = L(ω̂∗, ξ∗, λ, µ, η) = −1

2

∑
j

[4
∑
l,l′

λjlλjl′ylyl′kj(xl,xl′)+

+
∑
h,i
h′,i′

λhiλh′
i′

∑
u,u′

Mh
i,uM

h′
i′,u′kj(xu,xu′) +

∑
s,s′

(ηjs − η̄js)(ηjs′ − η̄js′ )kj(xs,xs′)+

−4
∑
l,h,i

λjlλhiyl
∑
u

Mh
i,ukj(xl,xu) + 4

∑
l,s

λjlyl(ηjs − η̄js)kj(xl,xs)+

−2
∑
h,i,s

λhi(ηjs − η̄js)
∑
u

Mh
i,ukj(xu,xs)] +

∑
j,l

λjl +
∑
h,i

λhi(
1

2

∑
u

Mh
i,u + qhi )+

−1

2

∑
j,s

(ηjs + η̄js).

Finally, we can formulate the dual problem as:

Dual Problem (5.9)
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max θ(λ, η) subject to

H∑
h=1

Ih∑
i=1

λhi

uj∑
u=1

Mh
i,u = 2

lj∑
l=1

λjlyl +

sj∑
s=1

(ηjs − η̄js)

0 ≤ λjl ≤ C1

0 ≤ λhi ≤ C2

ηjs ≥ 0, η̄js ≥ 0

where j ∈ NJ , l ∈ Nlj , h ∈ NH , i ∈ NIh , s ∈ Nsj .
From (5.9) we can find the optimal values λ∗jl , λ

∗
hi
, η∗js , η̄

∗
js

for all j, l, h, i, s.

Then, for all j = 1, . . . , J , the solution of the j–th objective with respect to

the optimal parameters in the dual space can be written as:

pj(x) = ω∗j · φj(x) + b∗j = 2

lj∑
l=1

λ∗jlylkj(xl,x)+

−
H∑
h=1

Ih∑
i=1

λ∗hi

uj∑
u=1

Mh
i,ukj(xu,x) +

sj∑
s=1

(η∗js − η̄
∗
js)kj(xs,x) + b∗j . (5.10)

As we can see, the solution can be rewritten as an expansion of the j–th kernel

kj with respect to the different types of constraints on the corresponding sam-

ple points. The first term corresponds to the pointwise constraints, the second

one to the logical constraints and the latter to the consistency constraints.

5.1.2 Experimental Results

Here, we report a first experimental evaluation of the proposed method on

two datasets. The first one is a toy problem that allows us to enlighten how

logical constraints contribute to the solution of a given problem. The second

one is based on the Winston benchmark for image classification.

Toy problem

We consider a multi-task problem, where we want to determine three predicate

functions p1, p2, p3 defined on R2 and with supervised examples in the sets
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L1, L2, L3, that are defined as:

L1 = {((0.1, 0.5),−1), ((0.4, 0.4),−1), ((0.3, 0.8), 1), ((0.9, 0.7), 1)} ,
L2 = {((0.1, 0.3),−1), ((0.6, 0.4),−1), ((0.2, 0.8), 1), ((0.7, 0.6), 1)} ,
L3 = {((0.4, 0.2),−1), ((0.9, 0.3),−1), ((0.2, 0.6), 1), ((0.5, 0.7), 1)} .

In Figure 5.1, we show the (unique) solution for the standard kernel machine

scheme in which we only take into account the pointwise constraints and we

set C1 = 15.
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Figure 5.1: The dotted, dashed and solid lines represent the task functions p1, p2

and p3 respectively. Data points with different shape relate to different predicates

and while empty symbols correspond to the false class, the filled ones correspond to

the true class.

Now let us suppose to know, apart from supervisions, some additional

relational information about the task functions, expressed by the logic clauses

ϕ1 : ∀x(p1(x)→ p2(x)), ϕ2 : ∀x(p2(x)→ p3(x)),

whose intuitive meaning is: whenever a pattern x belongs to the class p1 then

it also belongs to p2 and similar, if x belongs to p2 then it has to belong to p3.

To evaluate logical constraints we also exploit a few unsupervised examples.

For instance, in Fig. 5.2 we make a comparison between the effect of a single

point P (0.8, 0.3) (in which logical constraints were violated) and the effect of

a larger unsupervised training set

U = {(0.1, 0.5), (0.3, 0.7), (0.5, 0.4), (0.8, 0.3), (0.9, 0.2), (1, 0.5)} .

The last plot shows that with just few unsupervised points the boundaries of
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Figure 5.2: The pictures show, respectively from left to right, the effect of consid-

ering as unsupervised examples the single point P and the set U . In both cases we

set C1 = C2 = 2.5.

the predicates are correctly placed in the (unique) solution in order to satisfy

the given logic constraints in the considered domain.

Winston benchmark

The second experimental analysis is based on the animal identification prob-

lem originally proposed by P. Winston [151]. This benchmark was initially

designed to show the ability of logic programming to guess the animal type

from some initial clues.

The dataset is taken from the ImageNet3 database and it consists of 5605

images equally divided into 7 classes, each one representing one animal cate-

gory: albatross, cheetah, giraffe, ostrich, penguin, tiger and zebra. The vector

of numbers used to represent each image is composed of two parts: one repre-

senting the colors in the image, and one representing its shape. In particular,

the feature representation contains a 12-dimension of normalized color his-

togram for each channel in the RGB color space. Furthermore, the SIFT

descriptors [93] have been built by sampling a set of images from the dataset

and then detecting all the SIFT representations present in at least one of

the sampled images. Finally, the SIFT representations have been clustered

into 600 visual words. The final representation of an image contains 600

values, where the i–th element represents the normalized count of the i–th

visual word for the given image (bag-of-descriptors). As previously done in

Diligenti et al. [35], the test phase does not get as input a sufficient set of

clues to perform classification, but the image representations are used by the

3http://www.image-net.org .
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learning framework to develop the intermediate clues over which inference4 is

performed.

Rules

hair(x) → mammal(x)

milk(x) → mammal(x)

feather(x) → bird(x)

layeggs(x) → bird(x)

mammal(x) ∧ meat(x) → carnivore(x)

mammal(x) ∧ pointedteeth(x) ∧ claws(x) ∧ forwardeyes(x) → carnivore(x)

mammal(x) ∧ hoofs(x) → ungulate(x)

mammal(x) ∧ cud(x) → ungulate(x)

carnivore(x) ∧ tawny(x) ∧ darkspots(x) → cheetah(x)

carnivore(x) ∧ tawny(x) ∧ blackstripes(x) → tiger(x)

ungulate(x) ∧ longlegs(x) ∧ longneck(x) ∧ tawny(x) ∧ darkspots(x) → giraffe(x)

ungulate(x) ∧ white(x) ∧ blackstripes(x) → zebra(x)

bird(x) ∧ longlegs(x) ∧ longneck(x) ∧ black(x) → ostrich(x)

bird(x) ∧ swim(x) ∧ blackwhite(x) → penguin(x)

bird(x) ∧ goodflier(x) → albatross(x)

cheetah(x)∨ tiger(x)∨ giraffe(x)∨ zebra(x)∨ ostrich(x)∨ penguin(x)∨ albatross(x)

mammal(x) ∨ bird(x)

hair(x) ∨ feather(x)

darkspots(x) → ¬ blackstripes(x)

blackstripes(x) → ¬ darkspots(x)

tawny(x) → ¬ black(x) ∧¬ white(x)

black(x) → ¬ tawny(x) ∧¬ white(x)

white(x) → ¬ black(x) ∧¬ tawny(x)

black(x) → ¬ white(x)

black(x) → ¬ tawny(x)

white(x) → ¬ black(x)

white(x) → ¬ tawny(x)

tawny(x) → ¬ white(x)

tawny(x) → ¬ black(x)

Table 5.1: The KB used for training the models in the Winston image classification

benchmark.

The images have been split into two initial sets: the first one is composed

of 2100 images utilized for building the visual vocabulary, while the second set

is composed of 3505 images used in the learning process. The experimental

analysis has been carried out by randomly sampling from the overall set of the

supervisions the labels to keep as training, validation and test set, randomly

sampling 50%, 25%, 25% of the supervisions, respectively.

The knowledge about the classification task is expressed by a set of FOL

rules. A total of 33 classes are referenced by the KB, the final 7 plus other

intermediate classes, each of which is either representing a subset of animals

in a taxonomy (like the classes mammal or bird) or indicating some specific

feature of the animals (like hair or darkspots). Table 5.1 shows the set of

4The dataset and code to reproduce the results can be downloaded from https:

//github.com/diligmic/ECML2017\_1 .
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rules used in this task. The first 15 rules are the same as stated in the original

problem definition by Winston. The fact that each image shows one and only

one animal classification is expressed by another rule stating that each pattern

should belong to only one of the classes representing an animal. Another set

of rules forces the semantic consistency among the intermediate classes.

All the images are available at training time, but only the training sample

of the labels is made available during training. For each reported experiment,

one Kernel Machine is trained for each of the 33 predicates in the KB. Gaus-

sian kernels have been selected to be used in the experiments since they were

clearly outperforming both the linear kernel and all the tested variations of

the polynomial kernel. In Table 5.2 the summary of the results with respect

to different t-norm conversions of the considered logical formulas is reported.

Learning with the logic knowledge improved significantly the results. The

convex  Lukasiewicz fragment yields the highest F1 metric on this benchmark.

Baseline  Lukasiewicz Gödel Product Convex  Lukasiewicz

F1 0.45 0.53 0.52 0.55 0.56

Table 5.2: F1 values for the baseline (no logic knowledge) and using the KB inte-

grated into the learning process using different t-norms.

5.2 Support Logical Constraints

In Sec. 5.1 we presented a framework extending classical support vector ma-

chines (SVMs) with logical constraints still preserving quadratic optimization.

A main property of SVMs is that only a small portion of training data is signif-

icant to determine the maximum margin separating hyperplane in the feature

space, the so called support vectors. In this section, we show how this notion

can be extended in case of logical constraint. If we approach the problem in

the framework of constrained optimization, these vectors will correspond to

the active constraints in the Lagrangian formulation (see equation (5.8)). This

means that we can split the training examples into two categories, the support

vectors, that completely determine the optimal solution of the problem, and
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the straw vectors. By solving the Lagrangian dual of the optimization prob-

lem (see equation (5.10)), the support vectors are those supervised examples

corresponding to constraints whose Lagrangian multiplier is not null.

In a similar way, in the general schema of learning from constraints, where

possibly several constraints are considered, some of them may turn out to be

unnecessary with respect to the learning optimization. Hence, here we aim

at extending the definition of support vector to support constraint and we

provide some criteria to determine which constraints can be removed from

the learning problem still yielding the same optimal solutions. Moreover,

in the particular case of logical constraints, we are able to enlighten deepen

connections between unnecessary constraints and logical deduction.

The notion of support constraints has already been considered in [58, 59]

to provide an extension of the concept of support vector when dealing with

learning from constraints. The idea is based on the definition of entailment

relations among the constraints and the possibility of constraint checking

on data distribution. In this section, we provide a formal definition of un-

necessary constraints that refines the concept of support constraint and we

provide some theoretical results that characterize the presence of such con-

straints. These results are illustrated by examples that show in practice how

the conditions are verified. The main idea is that unnecessary constraints

can be removed from a learning problem without modifying the set of opti-

mal solutions. In a similar spirit, with the specific goal to define algorithms

accelerating the search for solutions in optimization problems, it is worth to

mention some related works in the Constraint Reduction (CR) field [71,142].

In particular, in [72] the authors show how to reduce the computational bur-

den in a convex optimization problem by considering at each iteration the

subset of the constraints that contains only the most critical (or necessary)

ones. In this sense, our approach allows us to determine theoretically which

are the unnecessary constraints as well as to enlighten their logical relations

with the other constraints.

5.2.1 Active Constraints

The expression of the optimal solution in equation (5.10) suggests to analyze

separately the contribution of the three categories of constraints. For what
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concerns the first component of the solution, as for the classic soft-margin

SVM case [20], the support vectors correspond to the pointwise constraints

that are active, namely such that 1−yl(2pj(xl)−1) = 2ξjl and λjl 6= 0. In the

same way, the h–th logical constraint is a support constraint if at least one of

its affine components is active, namely if λhi 6= 0 for some i ≤ Ih. The latter

component, corresponding to the hard consistency constraints, yields support

vectors only for those points where the learnable functions assume the crisp

values 0, 1. On the opposite, we refer to constraints whose multipliers are null

as straw constraints.

As we already pointed out, the optimal solution of Problem (5.7) is to-

tally determined by the support constraints, however the solution may be

not unique in general. In fact, the problem is convex if the Gram matrix of

the chosen kernels on the sample is positive-semidefinite (no uniqueness) and

strictly-convex if it is positive-definite (unique solution). For both cases, the

Lagrangian function associated to the problem may have different multiplier

vectors yielding a specific optimal solution. In particular, for a certain op-

timal solution of Problem (5.7), we can have two different multiplier vectors

with different support and straw constraints associated, e.g. see Example

5.3. The purpose of this study is to investigate the effective role of the con-

straints involved in a multi-task learning problem with logical constraints. In

particular, we are interested in constraints that are not necessary for the op-

timization, even if they may turn out to be supporting for a certain solution.

The main results of this section establish some criteria to discover unnecessary

constraints and their relationship with the underling  Lukasiewicz logic.

About Logical Constraint Multipliers

By construction, pointwise and consistency constraints are both related to a

single pattern for a given predicate. This means that the (possible) contribu-

tion of these active constraints to the solution in any point, as expressed by

equation (5.10), cannot be redistributed to other constraints of the same type.

On the opposite, each logical constraint involves in general more predicates

eventually evaluated on different points. Hence we may wonder if it exists

an opportune vector of Lagrange multipliers yielding the same contribution

to the solution for each point, where as much as possible multipliers for the
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logical constraints are set equal to zero.

At first, let us express the term for logical constraints in equation (5.10)

with respect to any training point xs as H∑
h=1

∑
i∈Ish

λ∗him
j
s,hi

 kj(xs, x) , (5.11)

where Ish contains the indexes of the affine functions involving the s–th ground-

ing of the j–th predicate. Since the expression (5.11) corresponds to the over-

all contribution of the logical constraints to the j–th optimal solution in its

s–th point, we are interested in the case that a single constraint contribution

can be assimilated by the other constraints in the same point for every pred-

icate. Namely, if there exists h̄ ≤ H such that for every j ≤ J and for every

s ≤ sj , there exist λ̄hi such that:

∑
i∈Is

h̄

λ∗h̄im
j

s,h̄i
=

H∑
h=1
h6=h̄

∑
i∈Ish

λ̄him
j
s,hi

.

This issue is addressed initially determining the solutions of Problem 1 and

then looking for a solution with null components for the h̄–th constraint. It

is also worth to notice that thanks to (5.11), equation (5.10) can be rewritten

more compactly as

sj∑
s=1

(
α
(P )
j,s + α

(L)
j,s + α

(C)
j,s

)
kj(xs, x) =

sj∑
s=1

α∗
j,skj(xs, x) (5.12)

where α
(P )
j (λ∗jl), α

(L)
j (λ∗hi), α

(C)
j (η∗js , η̄

∗
js

) denote the vectors of optimal coeffi-

cients (depending on optimal Lagrange multipliers) of the kernel expansion

for pointwise, logical and consistency constraints respectively.

Given an optimal solution for Problem (5.7), the solutions of Problem 1

correspond to multiplier values yielding the same optimal predicate functions.

In particular, we are interested in finding (if it exists) a solution for Problem

1 where the multiplier values are null for some constraint.
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Problem 1. Given a solution α for Problem (5.7), find λ ∈ RN such that:

M · λ = α,

where N =
∑H

h=1 Ih, M is the matrix of the mj
s,hi

with S =
∑J

j=1 sj rows and

N columns and α = M · (λ∗hi)h≤H,i≤Ih the vector of α
(L)
j for j = 1, . . . , J .

Solution 1. To solve Problem 1, we find an orthonormal base v1, . . . , vn of

Ker(M) = {λ : M · λ = 0}, so that any solution can be expressed as:

λ = λ∗ +
n∑
i=1

tivi ,

for some ti ∈ R. Finally, we have the following cases:

(i) if dim(Ker(M)) = 0 then the system allows the unique solution λ∗;

(ii) if dim(Ker(M)) 6= 0 then infinite solutions exist.

In the first case, the only constraints whose multipliers give null contribution

to the optimal solution are the original straw constraints. Whereas in the

second case, we look for a solution λ̄ (if there exists) where λ̄h̄i = 0 for any

i ≤ Ih̄ for some h̄ ≤ H. Indeed in such a case, we can replace λ∗ with λ̄

subdividing any contribution of the h̄–th constraint to the other constraints

still obtaining the same optimal solution for the predicates. This is carried

out by solving the linear system with Ih̄ equations λ̄h̄i = 0 and n variables

t1, . . . , tn.

In the following, we will say that a vector (λhi)h≤H, i≤Ih is a solution of

Problem 1 with respect to h̄, if it is a solution and λh̄i = 0 for every i ≤ Ih̄.

The Transitive Example

Here we illustrate, by means of some cases solved in MATLAB with the

interior-point-convex algorithm, how the method works and we discuss the

results to clarify what described so far. In particular, we exploit the transitive

law as a running example to enlighten how the theoretical results apply.
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Example 5.2. Learn the predicates p1, p2, p3 subject to ∀x p1(x) → p2(x),

∀x p2(x) → p3(x), ∀x p1(x) → p3(x). Given a common evaluation dataset

S , the logical formulas can be translated, according to Table 4.1 and equation

(5.4) into the following functional to be enforced, to evaluate as less or equal

than 0,

max
x∈S
{0, p1(x)− p2(x)}, max

x∈S
{0, p2(x)− p3(x)}, max

x∈S
{0, p1(x)− p3(x)},

yielding the following terms for the Lagrangian function in equation (5.8),

λ11(p1(x1)− p2(x1)), . . . , λ3s(p1(xs)− p3(xs)) .

At first we solve the optimization problem where, to avoid trivial solutions, we

provide a few supervisions for the predicates and we exploit a polynomial ker-

nel. To keep things clear, we consider only two points, S = {(1, 0.5), (0.4, 0.3)}.
Hence, given the (unique) solution α(λ∗) of Problem 5.7 (see Fig. 5.3), where

λ∗ = (0.5549, 0, 0, 0.5706, 0, 0), we have

M2 =



1 0 0 0 1 0

0 1 0 0 0 1

−1 0 1 0 0 0

0 −1 0 1 0 0

0 0 −1 0 −1 0

0 0 0 −1 0 −1



and α = M2 · λ∗ =



λ∗11
+ λ∗31

λ∗12
+ λ∗32

−λ∗11
+ λ∗21

−λ∗12
+ λ∗22

−λ∗21
− λ∗31

−λ∗22
− λ∗32


=



0.5549

0

−0.5549

0.5706

0

−0.5706


.

In this case all the solutions of Problem 1 are given for any t1, t2 ∈ R by

λ = λ∗ + t1 ·



−1

0

−1

0

1

0


+ t2 ·



0

−1

0

−1

0

1


=
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Figure 5.3: From left to right we report the evaluation of the learned functions

p1, p2, p3 in the example space for Example 5.2 and Example 5.3, respectively. Filled

squares correspond to the provided sample points.

=



λ∗11
− t1

λ∗12
− t2

λ∗21
− t1

λ∗22
− t2

λ∗31
+ t1

λ∗32
+ t2


=



0.5549− t1
−t2
−t1

0.5706− t2
t1
t2


,

where the vectors v1 = (−1, 0,−1, 0, 1, 0)′, v2 = (0,−1, 0,−1, 0, 1)′ form a base

for Ker(M2). From this expression, we get that the only way to obtain the

same α nullifying the contribution of the third constraint is taking t1 = t2 = 0,

namely taking λ = λ∗. We can also nullify the contribution of the first or

of the second constraint taking t1 = 0.5549, t2 = 0 or t1 = 0, t2 = 0.5706

respectively. In these cases we get λ∗1 = (0, 0,−0.5549, 0.5706, 0.5549, 0)′ and

λ∗2 = (0.5549,−0.5706, 0, 0, 0, 0.5706)′, but in any case the third one becomes

a support constraint.

As we can see from the previous example, the solutions of Problem 1 are

not necessarily vectors of KKT multipliers. Indeed, KKT–conditions include

stationarity, primal feasibility, dual feasibility and complementary slackness.

However, if we suppose that every null component in the initial optimal con-

figuration is preserved, then it is enough to ask for non-negativity of all the

other components. We call such solutions of Problem 1 as KKT–solution. For

instance, in Example 5.2, λ∗ is a KKT–solution while λ∗1 and λ∗2 are not.

It is worth noticing that we can attempt to find a configuration of mul-

tipliers solving Problem 1 and maximizing the number of logical constraints

whose contributions can be distributed to a few logical constraints remaining.
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However in general, it is not guaranteed to get a KKT–solution, hence it could

be not achievable by solving directly Problem (5.7).

Now lets come back to Example 5.2. Although it is easy to see that the

third constraint is deducible from the others with a logic argument, Problem

(5.7) may give a different perspective in terms of support constraints.

Example 5.3. Let us consider the same problem as defined in Example 5.2

with the additional point (0.2, 0.5) in S . In this case we get the solution

λ∗ = (0.3520, 0.3453, 0, 1.1529, 0, 0.5631, 0.4202, 0, 0)′, hence the third con-

straint turns out to be initially a support constraint. However we may wonder

if there is another solution of Problem 1 where the components of the third

constraint are null. The matrix of constraint coefficients M2 is augmented by

three rows and three columns corresponding to the additional grounding of the

predicates and to the new affine components for the logical constraints on the

new point. However, since the logical formulas to be enforced are the same,

the coefficient matrix M3 remains quite similar:

M3 =



1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1

−1 0 0 1 0 0 0 0 0

0 −1 0 0 1 0 0 0 0

0 0 −1 0 0 1 0 0 0

0 0 0 −1 0 0 −1 0 0

0 0 0 0 −1 0 0 −1 0

0 0 0 0 0 −1 0 0 −1


In this case, the dimension of Ker(M3) is increased exactly by one, as the

number of affine components of any involved logical constraint. This means,

we can try to find a λ̄∗ in which a certain constraint has null values. For in-

stance, λ̄∗= (0.7722, 0.3453, 0, 1.5731, 0, 0.5631, 0, 0, 0) is a solution of Prob-

lem 1 with respect to the third constraint. However, as before it is the only

KKT–solution allowing us to remove the contribution of a constraint.

The matrices associated to this problem for different size samples have

another remarkable property due to the involved constraints. Indeed, if we
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sort the rows and columns grounding-by-grounding, we can write

M2 =

(
M1 0

0 M1

)
, M3 =

(
M2 0

0 M1

)
,

where M1 =

 1 0 1

−1 1 0

0 −1 −1


is the matrix of Problem 1 (in case the sample set consists of just one point).

As we can expect, Dim(Ker(M1)) = 1 and we can find a KKT–solution with

the third component equal to zero. However, we get a more general result.

Indeed a base of Ker(M1) is given by v = (−1,−1, 1)′ and any solution of

Problem 1 can be written for some t ∈ R as:

λ = λ∗ + tv =

 λ∗1 − t
λ∗2 − t
λ∗3 + t

 . (5.13)

For t = −λ∗3 we get a solution of Problem 1 with respect to the third constraint

irrespective of the optimal solution determining the vector λ∗. In addition this

is a KKT–solution since λ∗i ≥ 0 for i = 1, 2, 3 and t ≤ 0, whereas the same

is not generally true with respect to the other two constraints. Since for this

problem, given n points in the sample, Mn can be written as n diagonal blocks

of M1, any solution of Problem 1 with respect to Mn can be written for some

t1, . . . , tn ∈ R, as

λ =



λ∗11
− t1

λ∗21
− t1

λ∗31
+ t1
...

λ∗32
+ t2
...

λ∗3n + tn


Taking ti = λ∗3i for i = 1, . . . , n we get a KKT–solution for this problem.

Therefore we can conclude that given any number of sample points for these
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constraints we can always find an optimal solution where the third one is a

straw constraint, namely where it is unnecessary.

By means of the transitive example we showed some properties of interest

under investigation. In the next section, we formalize the notion of unneces-

sary constraint for a learning problem and we discuss some logic and algebraic

criteria to discover if a certain constraint is necessary for the optimization.

5.2.2 Unnecessary Constraints

Roughly speaking, we say that a constraint is unnecessary for a certain opti-

mization problem if its enforcement does not affect the set of optimal solutions

of the problem. The main idea is that if we consider two problems (defined

on the same sample and with the same loss), one with and one without the

considered constraint, we have the same optimal solutions.

So far, we considered the case of logical constraints only. However, to show

how general this approach is, it is worth noticing that, given a predicate p,

both pointwise (equation (5.3)) and consistency constraints (equation (5.2))

can be expressed by opportune logical formulas, as well.

• Given a supervised pair (xl, yl) for p, we can consider the formulas:

1→ p(xl) if yl = 1 ,

p(xl)→ 0 if yl = 0 .

• The predicate evaluations may be limited to belong to [0, 1] if, for any

sample point xs for p, we consider the formula:

(0→ p(xl)) ∧ (p(xl)→ 1) .

In this uniform view, Problem 1 applies to all the constraints in Problem (5.7).

In the following, we define the notion of unnecessary constraint in both

cases of soft and hard constrains. The reason why we have to consider them

separately relies on the fact slack variables may affect the logical consequence.

Definition 5.1 (Unnecessary Soft-Constraint). Let us consider the learnable

functions in a set P evaluated on a sample S and KB = {ϕ1, . . . , ϕH}. We
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say that ϕh̄ ∈ KB is unnecessary for SP if the following sets, also called

α-solution of the problems for short, coincide, namely if

{α : (α, ξ) is a solution of (SP)} = {α : (α, ξ) is a solution of (SP)} ,

where the two problems are defined as

(SP) min
α,ξ

L1(α, ξ), with 1− fh(p̄) ≤ ξh, ξh ≥ 0, for h ≤ H ,

(SP) min
α,ξ

L2(α, ξ), with 1− fh(p̄) ≤ ξh, ξh ≥ 0, for h ≤ H,h 6= h̄ ,

with L1(α, ξ) = L(α) +
H∑
h=1

ξh, L2(α, ξ) = L(α) +

H∑
h=1

h6=h̄

ξh, L(α) =
∑
j≤J

α′jKjαj.

As we can observe in Definition 5.1, the loss functions L1 and L2 differ

for the additive term ξh̄. However a constraint is said unnecessary if the two

problems have the same α–solutions that, once provided, determine both the

task functions in P and the slack variables for the constraints.

The relation between logical inference and deducible constraints arises

naturally in this frame. However in general, logical deductive systems involve

truth preserving inference, hence to investigate logical criteria we restrict

the attention to the hard-constraint case, removing any slack variable. In

this way, satisfying a logical constraint means to evaluate the corresponding

formula exactly as one. Note that in this case, the constraints may turn out

to be unfeasible for a given kernel.

Definition 5.2 (Unnecessary Hard-Constraint). Let us consider the learnable

functions in a set P evaluated on a sample S and KB = {ϕ1, . . . , ϕH}. We

say that ϕh̄ ∈ KB is unnecessary for HP if the optimal solutions of problems

HP and HP coincide, where

(HP) min
α
L(α), with 1− fh(p̄) ≤ 0, for h ≤ H ,

(HP) min
α
L(α), with 1− fh(p̄) ≤ 0, for h ≤ H,h 6= h̄

and L(α) =
∑
j≤J

α′jKjαj.
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It is worth noticing that without slack values the losses of the two prob-

lems become the same, but in general the feasible solutions satisfying the

constraints can be different. Indeed, if we refer to F and F for the feasible

sets of HP and HP respectively, we have in general only F ( F .

Since all the considered constraints correspond to logical formulas, we can

also exploit some consequence relation among formulas in  Lukasiewicz logic.

In the following, we will write Γ |= φ, where Γ ∪ {φ} is a set of propositional

formulas, to express the truth preserving logical consequence in  L, stating

that φ has to be evaluated as true for any assignment evaluating as true all

the formulas in Γ.

Proposition 5.1. If {ϕh : h = 1, . . . ,H, h 6= h̄} |= ϕh̄ then ϕh̄ is unnecessary

for HP.

Proof. By hypothesis, any solution satisfying the constraints of HP satisfies

the constraints of HP as well, namely we have F = F . The conclusion easily

follows since the two problems have the same loss function with the same

feasible set.

As it is clear, from the above proposition, it follows that the third con-

straint in the examples 5.2 and 5.3 is unnecessary. In addition, if we are

in presence of more equivalent constraints, we can consider the problem with

just one of such constraints instead, still obtaining the same optimal solutions.

One of the main advantages of this approach is providing some criteria

to determine the constraints that are not necessary for a learning problem.

Indeed, in presence of a large amount of logical rules, Proposition 5.1 ensures

that we can remove all the deducible constraints simplifying the learning pro-

cess still getting the same solutions. However, the vice versa of Proposition

5.1 is not achievable, since the logical consequence has to hold for every as-

signment. The notion of unnecessary constraint is local to a given dataset,

indeed the available sample is limited and fixed in general. However, if a

constraint is unnecessary then the optimal solutions with or without it coin-

cide and we have that such constraint is satisfied whenever the other ones are

satisfied by any optimal assignments. Such consequence among constraints,
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taking into account only the assignments leading to best solutions on a given

dataset, provides an equivalence with the notion of unnecessary constraint.

It is interesting to notice that a slightly different version of this consequence

has already been considered in [58].

Towards an Algebraic Characterization

In Sec. 5.2.1 we introduced a criterion to discover if a given constraint ϕh̄ can

be deactivated solving Problem 1. The method consists in finding a vector of

Lagrange multipliers with null components corresponding to the groundings of

ϕh̄. We are now interested in discovering the relation between this criterion

and the notion of unnecessary constraint. Some results are stated by the

following propositions.

Proposition 5.2. If ϕh̄ is unnecessary for HP then for any optimal solution

of HP there exists a KKT–solution λ̄ of Problem 1 with respect to h̄.

Proof. If ϕh̄ is unnecessary then HP and HP have the same optimal solutions.

Let us consider one of them, lets say α∗, where α∗ = α(λ∗hi) = α(λ̂∗hi) for

the two problems with respect to some multipliers vectors (λ∗hi)h≤H, i≤Ih and

(λ̂∗hi)h≤H,h 6=ĥ, i≤Ih . Since the two vectors of multipliers yield the same optimal

solution, then we can define for every h ≤ H, i ≤ Ih the KKT–solution λ̄ of

Problem 1 as:

λ̄hi =

{
λ̂∗hi for h 6= h̄

0 otherwise .

This has to be thought of as a necessary condition to discover which logical

constraints can be removed from HP still preserving its optimal solutions.

However, the other way round does hold in case either HP or HP has a

unique solution α∗, but in general we can only prove a weaker result.

Proposition 5.3. If there exists a KKT–solution λ̄ of Problem 1 with respect

to h̄ (for a certain optimal solution ᾱ∗ = α(λ̄) of HP), then the set of optimal

solutions of HP is included in the set of optimal solutions of HP.
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Proof. Given any optimal solution α∗ of HP, since the problem is (at least)

convex, we have L(α∗) = L(ᾱ∗). At this point, we note that ᾱ∗ is also feasible

for HP and that the restriction of λ̄ on components h 6= h̄ is a vector of

Lagrange multipliers for HP satisfying the KKT–conditions. The convexity

of the problem guarantees that the KKT–conditions are sufficient as well.

This means that ᾱ∗ is also an optimal solution for HP, hence its loss value is

a global minimum and the same holds for α∗.

In this case we cannot conclude that any optimal solution of HP is an

optimal solution for HP because in general this solution could be not feasible

for this problem. However as we pointed out above, we have the following

consequence.

Corollary 5.1. If HP (or equivalently HP) has a unique solution then the

assumption of Proposition 5.3 is also sufficient.

Proof. The solution is unique if the Gram matrix K, that is the same in

both the problems, is positive-definite. Hence, requiring the uniqueness of

the solution for the two problems is equivalent. Then the claim is trivial from

the proof of Proposition 5.3.

It is worth to notice that since the optimal solutions α∗ of Problem (5.7)

do not depend on the slack variables, we conjecture that the results of this

section but Proposition 5.1 also apply to the soft-constraints case. On the

opposite, truth preserving logical consequences are no more exploitable if the

logical constraints are softly violated.

From Support to Necessary Constraints

The presence of the consistency constraints limits the possible values of the

learnable functions between 0 and 1. On the other hand, since we are dealing

with hard constraints, the supervisions force the predicates to assume values

less than 0 for negative examples and greater than 1 for the positive ones.

This means that both pointwise and consisteny constraints will be evaluated

exactly to 0 for any optimal solution (if the problem is feasible) on the super-

vised sample and all the corresponding Lagrange multipliers will be different

from zero, namely they will turn out to be support constraints. However,
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they could be unnecessary constraints for the problem and we could actually

remove them from the optimization. By means of the next example we show

how the integration with logical constraints can bridge different constraints

on the same groundings and admits possibly several unnecessary constraints.

Even if quite trivial, the next example enlightens how the method works.

Example 5.4. Let us consider the same problem as Example 5.2 with only

one sample point, i.e. S = {(0.4, 0.3)} that is labelled as negative for p1 and

positive for both p2 and p3. We express the pointwise constraints as well as

the consistency constraints in logical form. All the constraints are obtained

requiring the following linear functions to be less or equal than zero:

(logical) (pointwise) (consistency)

p1(x1)− p2(x1), p1(x1), −p1(x1), p1(x1)− 1,

p2(x1)− p3(x1), 1− p2(x1), −p2(x1), p2(x1)− 1,

p1(x1)− p3(x1), 1− p3(x1), −p3(x1), p3(x1)− 1.

The coefficients matrix M for such constraints on this point is a rectangular

matrix with 3 rows (one per grounded predicate) and 12 columns:

(
1 0 1 1 0 0 −1 1 0 0 0 0

−1 1 0 0 −1 0 0 0 −1 1 0 0

0 −1 −1 0 0 −1 0 0 0 0 −1 1

)

However in this case the constraints are deterministic. Exploiting the com-

plementary slackness and the condition for the Lagrange multipliers given

by Problem 1, we can easily provide several combinations of values for the

multipliers yielding the same solution. In this case the Gram matrix K

is trivially a positive-definite matrix (K = 1.25) and the solution α∗ =

(0, 0.8, 0.8) provided by a linear kernel is unique. For this simple example we

have only two possible KKT–solutions of Problem 1 maximizing the number

of unnecessary constraints, namely λ̄ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8, 0, 0.8)′ and

λ̂ = (0, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.6)′. This may be easily shown since the com-

plementarity slackness forces λ1 = λ3 = λ8 = λ9 = λ11 = 0 and multiplying
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by M the remaining multipliers, it has to be satisfied:
λ4 − λ7 = 0

λ2 − λ5 + λ10 = 0.8

−λ2 − λ6 + λ12 = 0.8

Since HP has a unique solution, from Corollary 5.1, we have two different

minimal optimization problems. The first one with only p2(x1) − 1 ≤ 0 and

p3(x1)− 1 ≤ 0 and the other one with p2(x1)− p3(x1) ≤ 0 and p3(x1)− 1 ≤ 0

as necessary constraints respectively.

In the end, in this section we proposed some criteria as well as a formal

definition to capture the notion of unnecessary constraint in a certain learning

from constraint problem. The necessity of a certain constraint is related to

the notion of consequences among the other constraints that are enforced

at the same time. This is a reason why we decided to deal with logical

constraints, that are quite general to include both pointwise and consistency

constraints, indeed they provide a very natural way of expressing consequence

relations. The logical consequence among formulas is a sufficient condition to

conclude that a constraint, corresponding to a certain formula, is unnecessary.

However, we also provide an algebraic necessary condition that turns out to

be sufficient in case the Gram matrices associated to the employed kernel

functions are positive-definite.

5.3 Collective Classification

The logical constraints allow us to express relational information on different

objective functions at the same time, hence they can be very suitable for col-

lective classification problems [135]. Here, we formulate the collective setting

in the same spirit as what we did for kernel machines. The logical formulas

are collected in KB and each predicate pj is supposed to be evaluated on its

sample set Sj , we recall that p̄j = (pj1, . . . , pjsj ) denotes the vector of all the

possible groundings of pj and p̄ = (p̄1, . . . , p̄J).

In Sec. 5.1, we assumed to learn the objective functions by the training of

opportune kernel machines, whereas in this case, we assume that an appro-

priate model (e.g. a neural network or whatever) has already been trained to
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compute their values taken as a prior. In the following, we indicate by p̂j the

available vector of priors for the j–th objective function and by p̂ their overall

concatenation. Even if the priors assume [0, 1]–values, we have to guarantee

the same for the values into the grounding vectors of the objective functions.

Then, we enforce again the constraints of equation (5.2) and (5.4), whereas

we remove the pointwise constraints (5.3), indeed we only require to be close

to the known prior vector.

Given this setting, the considered multi-task learning problem for collec-

tive classification may be formulated as follows.

Collective Classification Problem (5.14)

min
p

∑
j∈NJ

||p̄j − p̂j ||2 + C1

∑
h∈NH

ξh subject to:

1− fh(p̄) ≤ ξh, ξh ≥ 0,

0 ≤ pj(xs) ≤ 1,

where h ∈ NH , j ∈ NJ , s ∈ Nsj , xs ∈ Sj and C1 is used to weigh the degree

of satisfaction of the logical constraints. This optimization problem aims at

finding the grounding for the predicates closest to the given priors and yielding

the minimal violation of the constraints. If we assume to deal with formulas in

the concave fragment, then the logical constraints can be rewritten according

to (5.6) and we still obtain a quadratic programming problem that can be

efficiently solved.

Manifold Regularization

As an example, we discuss here the already mentioned logical rule for manifold

regularization (4.6). In principle, given a binary predicate R(x, y) and a unary

predicate P defined on the same domain, we can require that P assumes as

close as possible values on those points that are related by R. For instance,

the topological properties of the original domains of the predicates are not

explicitly represented in the considered setting, apart from the values assigned

for the given priors. This suggests to consider a predefined binary relation

R(x, y) expressing the membership of the two points to a same manifold. For
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instance, a spatial regularization manifold can be defined as

R(x1, x2) = exp

(
−||x1 − x2||2

σ2

)
,

where σ is a neighbourhood width parameter. In order to apply the mani-

fold regularization for a certain predicate pj with respect to a certain binary

predicate R, we can enforce the satisfaction of the following logical formula,

where for each x1, x2 ∈ Sj , R12 = R(x1, x2), pj1 = pj(x1), pj2 = pj(x2):

R12 → ((pj1 → pj2) ∧ (pj2 → pj1)) ,

that yields the convex constraint

max{0, R12 + pj1 − pj2 − 1, R12 − pj1 + pj2 − 1} ≤ ξ ,

and also to the following linear constraints

R12 + pj1 − pj2 − 1 ≤ ξ ,
R12 − pj1 + pj2 − 1 ≤ ξ .

5.3.1 Experimental Results

For the evaluation of a collective classification setting, we consider once again

the image classification task originally proposed by P.Winston [151]. Since we

already described the problem in Sec. 5.1.2, we only mention the differences on

the considered dataset and those due to the exploited models. The dataset

used in this section is composed by 3505 images with size 32 × 32 pixels,

occurring at different distances, angles and poses. In this case, we assume to

be in a transductive context, namely all the images are available at training

time but only a subset of the supervisions are available. In particular, in

the experiments the amount of training supervisions is varied between 10%

and 90%. The knowledge domain is expressed in terms of first–order logic

rules as shown in Table 5.1, where 7 of the predicates in the KB correspond

to the final animal classes, and the others are intermediate predicates that

help in determining the final classes during the inference process performed

by collective classification.

A feedforward neural network having one single output neuron and a single

hidden layer containing 30 neurons was trained for each final or intermediate
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Figure 5.4: Accuracy of the classifiers varying the amount of available training

supervisions.

predicate in the KB. The single output neuron used a sigmoidal activation

function, while the hidden neurons used a rectified linear activation function.

The networks are trained against the training set labels using a quadratic

cost function on the output. Resilient backpropagation [105, 121] was used

to accelerate the convergence of the training process, which was executed for

500 full-batch iterations and using 0.0001 as initial learning rate for all the

weights. The network outputs are used to initialize the values of the grounded

predicates for the subsequent collective classification step.

Three settings are compared in the experiments. In the first setting, the

neural networks classify directly the images based on their input feature based

representation without any logic knowledge. In the second, the proposed

collective classification, based on the given KB, is applied after initializing

the grounded predicate values using only the supervisions available in the

train set, whereas setting the other values to 0.5. Finally, in the third set-

ting, the collective classification is performed after the initialization of each
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grounded predicate with the output of the corresponding neural network for

that grounding. Basically, this last classifier in general provides a better prior

also for those nodes that are not supervised. In Figure 5.4 we report the ac-

curacy on the test labels for different percentages of the available supervisions

for training. The accuracy is computed on the 7 exclusive final animal classes,

where the class assignment for a pattern is performed via an argmax of the

output classification values.

Collective classification exploiting the KB significantly improves the per-

formances of the neural network classifiers. In particular, the inference step

consolidates the final assignments by fixing the inconsistencies of the classifier

outputs using the prior knowledge. Among the two collective classification

settings, the best performance is obtained by exploiting the outputs of the

neural networks as priors. This is because the neural networks not only fit

well the available supervisions, but also provide a better prior for the un-

supervised grounded predicates. When many supervisions are available, the

inference process tends to be fully specified (the benchmark assumes that it is

always possible to uniquely identify an animal given a complete set of clues,

e.g. the values for the intermediate predicated are known), and the gap in

the performances of the two collective classifiers becomes smaller.

5.4 Extending Probabilistic Soft Logic

Probabilistic soft logic (PSL) [6, 75] is a general framework for probabilistic

reasoning in relational domains (see Sec. 3.3 for more details). Similarly to

Markov Logic Networks [120], PSL uses first–order logic rules to instantiate

a graphical model having as nodes the values of each grounded predicate,

represented as soft-assignments in [0, 1].

PSL uses the  Lukasiewicz logic to implement a relaxation technique com-

monly used to solve MAX SAT problems. In particular, let C = {c1, . . . , cm}
be a set of logic disjunctive clauses, where each formula in the disjunction is

a literal, i.e. an atomic formula or its negation. PSL embeds the knowledge

into a Markov Random Field (MRF), which builds a distribution over possible
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interpretations as:

P (I) =
1

Z
exp

− m∑
j=1

λj Φj(I)


where λj ≥ 0 is the weight of the clause cj , Z is the partition function and

the potential Φj expresses the distance from the satisfaction of the formula cj .

Each weight λj can be used to express how strongly the j–th clause is enforced

to hold true. In fact, a higher weight penalizes stronger an assignment that

does not satisfy the corresponding clause.

PSL assumes the assignment of a template to each clause cj , that is reused

for each single grounding of the clause in the interpretation. Assuming that a

clause is universally quantified, the MRF has one clique for each grounding of

such formula and the potential Φj can be expressed as the sum of the poten-

tial φj on all the possible groundings. In particular, Φj(Ij) =
∑

g∈Ij φj(g),

where Ij is the set of groundings of the j–th formula with respect to the

interpretation I. Let I+
j and I−j be the indexes of the positive and negative

literals respectively in a grounding of cj . PSL employs the  Lukasiewicz logic

to express φj and since disjunctive clauses are supposed, φj results into the

following convex functional:

φj(g) = max{0, 1−
∑
k∈I+

j

gk −
∑
k∈I−j

(1− gk)}. (5.15)

The PSL framework defines an efficient method to perform inference and to

determine the most likely interpretation given the available evidence. This is

equivalent to minimize the summation in the exponential, which corresponds

to a linear (convex) optimization problem under the restrictions defined above.

However, using the concave  Lukasiewicz fragment proposed in this paper,

inference remains tractable also when lifting the restriction to disjunctive

formulas. In fact, as we have already mentioned, any boolean formula can be

rewritten in (CNF) and then embedded into the concave fragment exploiting

(4.5). However, the negation of such formula, that expresses its distance from

the satisfaction to be minimized, can be written as the convex functional:

max{0, 1− l1(g), . . . , 1− ln(g)}
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where for i = 1, . . . , n, li(g) corresponds to the grounding g of some logic

disjunctive clause li. Since the expression above can be thought of as a po-

tential that extends (5.15) still preserving convexity, we can extend the set of

formulas represented in PSL to the whole concave fragment (∧,⊕)∗.



Chapter 6

LYRICS

The theoretical results that have been previously provided, all concern the

integration of prior knowledge expressed by first–order logic formulas with

machine learning techniques. In this chapter, we present LYRICS (Learning

Yourself Reasoning and Inference with ConstraintS), a generic interface layer

for AI, which is implemented in TersorFlow (TF) [1]. LYRICS provides a

declarative language that allows us to exploit the full expressiveness of first–

order logic to define the background knowledge. The predicates and functions

of the FOL knowledge can be bound to any TF computational graph, and the

formulas are converted into a set of real-valued constraints, which partici-

pate to the overall optimization problem. This allows us to learn the weights

of the learners, under the constraints imposed by the prior knowledge. The

framework is extremely general as it imposes no restrictions in terms of which

models or knowledge can be integrated. In the following, we show the po-

tentiality of LYRICS by presenting some use cases of the LYRICS language,

including generative models, logic reasoning, model checking and supervised

learning.

LYRICS has its root in frameworks like Semantic–Based Regularization

(SBR) [33, 34] built on top of Kernel Machines and Logic Tensor Networks

(LTNs) [137] that can be applied to neural networks. These frameworks trans-

form the FOL clauses into a set of constraints that are jointly optimized dur-

ing learning. However, LYRICS generalizes both approaches by allowing us

to enforce the prior knowledge transparently at training and test time and

dropping all constraints regarding the form of the prior knowledge. Another

line of research [32, 126] attempts at using logical background knowledge to

improve the embeddings for relation extraction. However, these works are

also based on ad-hoc solutions that lack a common declarative mechanism

that can be easily reused. They are all limited to a subset of FOL and they
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allow the injection of the knowledge at training time, with no guarantees that

the output on the test set satisfies the knowledge. A recent framework to

integrate probabilistic logical reasoning with the deep-learning infrastructure

of TF is given by TensorLog [19]. However TensorLog is limited to reasoning

and does not allow us to optimize the learners while performing inference.

Moreover, TensorFlow Distributions [37] and Edward [144] are also related

frameworks for integrating probability theory and deep learning, but these

frameworks focus on probability theory and not on the representation of logic

and reasoning.

The lack of a declarative frontend makes SBR and LTN hard to extend

beyond the classical classification tasks, where they have been applied in the

past. On the other hand, LYRICS defines a declarative language, which drops

the barrier to build models exploiting the available domain knowledge in any

machine learning context. In particular, any many-sorted first–order logical

theory can be expressed in the framework, allowing us to declare domains of

different types, with constants, predicates and functions. LYRICS provides a

very tight integration of learning and logic, as any computational graph can

be bound to a FOL predicate. This allows us to constrain the learner both

during training and inference. Since the framework is agnostic to the learners

that are bound to the predicates, the framework can be used in a wide range

of applications including classification, generative or adversarial ML, sequence

to sequence learning, collective classification, and so on.

6.1 The Declarative Language

LYRICS defines a TensorFlow (TF)1 environment in which learning and rea-

soning are integrated. The definition of the knowledge in the presented en-

vironment starts by defining a certain number of domains in the considered

world. A domain determines a collection of individuals of the world that share

the same representation space and, thus, can be analyzed and manipulated in

a homogeneous way. For example, a domain can collect the set of considered

30×30 pixel images, or the sentences of a book as bag-of-words. The domains

are then filled with their “members”, on which the learning and reasoning will

1https://www.tensorflow.org/
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be carried.
For example, a domain called Images can be defined in LYRICS as:

Domain(label="Images", data=data_images)

where data images is the placeholder of the input data and Images represents
the name we may refer to the domain in constraints2. The elements of a
domain are a sort of “anonymous” individuals that are collectively processed.
On the other hand, an individual of a domain can also be separately specified,
like a FOL constant. In particular, a certain individual can be added to a
domain using the following construct:

Individual(label="dog12", domains=("Images"), value=img0_data)

As we already said, LYRICS allows us to exploit the full expressiveness of
first–order logic (see Sec. 2.1.1) to declare the background knowledge. Hence
in particular, both FOL functions and predicates are definable. A function
can be defined to map elements from the input domains into an element of an
output domain. A unary function takes as input an element from a domain
and transforms it into an element of either the same or of another domain.
An n–ary function takes as input n elements (of possibly different domains),
mapping them into an element of its output domain. For example, it is
possible to define arithmetic functions to operate over numbers, or encoding
functions to transform elements of a domain into a latent space. As we will see
in Sec 6.4, FOL functions will play a special role in facing generation tasks. In
LYRICS, any function is implemented as a TF computational graph, taking
as input a fixed number of input tensors representing elements of the input
domains and returning an output tensor. The following example shows how
to define a function on the domain Images:

Function(label="encoder", domains=("Images"), function=CNNEncoder)

where CNNEncoder is the placeholder for the TF implementation of the FOL

function named encoder. Please note that we decide to not explicitly define

the codomain of functions, indeed this is implicitly determined by the domain

of predicate functions taking this values as input.
A predicate can be defined as a function mapping elements of the input

domains to truth values, as for instance isCat(x) or areClose(x,y). For ex-
ample, a predicate bird implemented by a neural network NN and taking as
input the patterns in the domain Images can be defined as:

2The attributes label,data,. . . are optional in the declaration and can be omitted.
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Predicate(label="bird", domains=("Images"), function=NN)

Finally, it is possible to declare the knowledge about the world by means
of a set of constraints. Each constraint is a generic FOL formula built upon
the previously defined constructs: individuals, functions and predicates. For
instance, if we are given the domain Images, composed of animal images, and
two predicates bird and flies defined on it, the user can express the knowledge
that all birds fly by means of the constraint:

Constraint("forall x: bird(x) -> flies(x)")

6.2 From Logic to Learning

The main idea behind the LYRICS framework is that a certain learning prob-

lem can be formulated simply declaring a set of (FOL) constraints. However,

so far, we only specified the syntax of the language. In this section, we show

how this high level description of a problem can be translated into an effective

learning model that can be optimized to learn functions and predicates satis-

fying the given constraints. TensorFlow, which the framework is built on top,

performs computations by building a computational graph, where nodes of the

graph are operations manipulating all the tensors represented by their incom-

ing edges. TF performs automatic differentiation of a generic computational

graph by the exploitation of the chain rule of calculus. Since the framework

implements all its components within TensorFlow, any TensorFlow model can

be integrated in LYRICS. The proposed framework compiles a high level de-

scription of the knowledge into a computational graph by translating each

piece of logic knowledge as constraints. The resulting computational graph is

optimized exploiting the standard TF optimization mechanism. In the follow-

ing, we describe how this translation is performed with respect to the general

architecture of LYRICS depicted in Figure 6.1.

Domains and Individuals. Domains and individuals allow users to

provide data to the framework as tensors and represent the leaves of the

computational graph. While domains are represented by constant tensors,

individuals can be represented by both constant and variable tensors. In this

way, the user is allowed to provide the knowledge of the existence of a certain
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Figure 6.1: An high level description of the architecture of LYRICS
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Figure 6.2: The translation of the FOL formula ∀x dog(x) → mammal(x) into a

TF computational graph.

individual, even if its feature representation is unknown, and its representation

will be optimized to be coherent with the other provided pieces of knowledge.

Functions and Predicates. Functions allow the mapping among dif-

ferent tensors of (possibly) different domains, while predicates allow us to

express the truth degree of some property for those tensors. Both functions

and predicates can be implemented using any TF computational graph. If the

graph does not contain any variable tensor (i.e. it is not parametric), then we

say it to be given; otherwise all the variables will be automatically learned to

maximize the constraint satisfaction and we say the function/predicate to be

learnable. Given functions are usually arithmetic functions (e.g. +), similarity

or comparison functions (e.g. =,≤). Learnable functions can be (deep) neu-

ral networks, kernel machines, radial basis functions, or any learning model

whose parameters have to be learned. This distinction between given and



114 6. LYRICS

learnable functions is useful to explain problems but the framework makes no

distinction between these two classes.

Constraints. The integration of learning and logical reasoning is achieved

by compiling the logical rules into continuous real-valued constraints. The log-

ical rules correlate all the defined elements and enforce some desired behaviors

on them. Indeed, the logical formulas combine some facts expressed by the

predicates by means of logical connectives with respect to variables and func-

tions applied to them. For this reason, constraints are the main elements of

this framework.

Variables, functions, predicates, logical connectives and quantifiers can all

be seen as nodes of an expression tree [36]. The evaluation of a constraint

corresponds to a post-fix visit of the expression tree, where the visit action

builds the correspondent portion of computational graph. In particular:

• visiting a variable substitutes the variable with a tensor in the domain

it belongs to;

• visiting a function or predicate provides input tensors to the TF models

implementing those functions;

• visiting a connective combines predicates by means of the real-valued

operation associated to the connective;

• visiting a quantifier aggregates the outputs of the expressions obtained

for the single variable groundings.

Connectives are implemented using fuzzy generalizations of FOL that pro-
vide a continuous generalization of their boolean counterparts. However, there
are several possible choices to establish their semantics and some possible
choices are reported in Table 2.2. The constraints are aggregated over a set of
data by means of FOL quantifiers. In particular, the universal and existential
quantifiers can be seen as a logic AND and OR applied over each grounding
of the data, respectively. Therefore, different quantifiers can be obtained de-
pending on the selection of the underlying t-norm and t-conorm respectively.
LYRICS is provided with some built-in logical frameworks, however any user
can customize the way connectives and quantifiers are mapped into fuzzy op-
erators. For example, the following code sets the connectives and quantifiers
occurring in the constraints to be converted according to Product logic:
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current_world.logic = LogicFactory.create("product")

Finally, any formula is converted by associating to any logical expression

its fuzzy representation, as reported for instance in equation (4.1), where

the quantifiers are mapped into the min and max operations. In Figure 6.2

an example of the translation of a logic formula into its expression tree and

successively into a TensorFlow computational graph is shown.

For instance consider the rule ∀x∃y Child(x)⇒ Parent(x, y)∧Mother(y)

where Child,Mother are unary predicates determining whether a pattern is a

child and a mother, respectively and Parent is a binary predicate indicating

whether a pair of data points are linked via a parental link. This rule states

that every child has a parent who is her/his mother. Using the Product

t-norm both for the conjunction and the universal quantifier, the material

implication of Product logic (see Table 2.2) and a max operation for the

existential quantifier, the rule is translated as follows:∏
x∈X

max
y∈X

{
1− fC(x) + fC(x) · fP (x, y) · fM (y)

}
where fC , fM , fP are functions (to be learned) approximating the predicates

Child, Mother and Parent, respectively and X is the set of patterns repre-

senting a group of people.
Supervisions Any available supervision for the functions or predicates

can be integrated into the learning problem. LYRICS provides a placeholder
where this fitting is expressed, called PointwiseConstraint. This construct
refers to a computational graph where a loss is applied for each supervision
(e.g. the loss defaults to the cross–entropy loss for any neural network classi-
fier) and it can be overridden to achieve a different behavior:

PointwiseConstraint(model, labels, inputs)

where model is the function for which to enforce supervisions labels on data

inputs. However, as we already observed in Sec. 5.2.2, the pointwise contraints

can also be written directly in logical form.

Cost Function Let us assume to be given a knowledge base consisting of

a set of FOL formulas KB = {ϕ1, . . . , ϕH}, where some of the elements (indi-

viduals, functions or predicates) are unknown. The learning process aims at
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finding a good approximation of each unknown element, so that the estimated

values will satisfy the FOL formulas for the input samples. A computational

graph for each constraint is built. Let f and p be the vectors of learnable

functions and predicates, respectively. Let 0 ≤ Φh(Xh,f ,p) ≤ 1 indicate the

degree of satisfaction of the h-th constraint evaluated on all its inputs Xh.

This framework is very general and it accommodates learning from examples

as well as the integration with FOL knowledge. In general terms, the learning

scheme we propose can be formulated as the minimization of the following

term in order to satisfy the constraints:

Lc(X ,f ,p) =

H∑
h=1

λchL
(

Φh

(
Xh,f ,p

))
, (6.1)

where X denotes the overall set of samples where the functions and predi-

cates are evaluated, λch denotes the weight for the h–th logical constraint and

the function L represents any monotonically decreasing transformation of the

constraints conveniently chosen according to the problem under investigation.

Common choices adopted in LYRICS for L are given by:

(a) L
(

Φh

)
= 1− Φh, (6.2)

(b) L
(

Φh

)
= − log

(
Φh

)
. (6.3)

The conversion of formulas into real-valued constraints is carried out auto-

matically in the framework we propose. Indeed, LYRICS takes as input the

expressions defined using a declarative language and builds the constraints

once we decide the conversion functions to be exploited. For instance, when

the mapping defined in Equation 6.2-(b) is applied to an universally quanti-

fied formula, i.e. ∀xϕ(x), it yields the following constraint:

L

(∏
x∈X

Φ
(
X ,f ,p

))
= − log

(∏
x∈X

Φ
(
X ,f ,p

))
=

∑
x∈X
− log

(
Φ
(
X ,f ,p

))
, (6.4)

that corresponds to a generalization to generic fuzzy logic expressions of the

cross–entropy loss, which is commonly used to force the fitting of the super-

vised data for deep learners.
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However, LYRICS allows us to integrate classical supervised learning and

learning from constraints modeling the prior knowledge. The overall cost

function may be composed of different terms, both on functions and predi-

cates, forcing the fitting of the supervised examples, avoiding complexity in

the learned functions and expressing the logical constraints satisfaction:

λfsLs(X fs ,f) + λpsLs(X ps ,p) + λfrLr(f) + λprLr(p) + λcLc(X ,f ,p) ,

where X fs ,X ps ∈ X denote the supervised data for functions and predicates

respectively, Ls is a loss function to enforce the supervisions, Lr expresses a

regularization term and λfs , λ
p
s, λ

f
r , λ

p
r , λc denote some coefficients weighting

(differently) each loss contribution.

6.3 Example Driven Presentation of LYRICS

Here we present a list of examples illustrating the range of learning tasks

involving both symbolic and sub-symbolic information that can be expressed

in the proposed framework. In particular, it is shown how it is possible to

force label coherence in semi–supervised or transductive learning tasks, how

to implement collective classification over the test set, rule induction from

the learned predicates as in classical inductive logic programming (ILP), pure

logical reasoning and how to address generative tasks or pattern completion in

the case of missing features. The examples are presented using the LYRICS

syntax directly to show that the final implementation of a problem fairly

retraces its abstract definition3.

Semi–Supervised Learning

In this task we assume to have available a set of 420 points distributed along

an outer and an inner circle. The inner and outer points belong and do not

belong to some given class A, respectively. A random selection of 20 points

is supervised (either positively or negatively), as shown in Figure 6.3. The

remaining points are split into 200 unsupervised training points, shown in

3The software of the framework and the experiments are made available at https://

github.com/GiuseppeMarra/lyrics.
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Figure 6.3 and 200 points left as test set. In what follows, we assume that a

neural network has been created in TF to approximate the predicate A.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 A
not A

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 not A
A

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 not A
A

Figure 6.3: Semi–supervised Learning: (a) data that is provided with positive and

negative supervisions for class A; (b) the unsupervised data provided to the learner;

(c) class assignments using only the supervised examples; (d) class assignments using

learning from examples and constraints.

The network can be trained requiring the fitting with the supervised data.
Hence, given the vector of data X, a neural network NN A and the vector of
supervised data X s with the vector of associated labels y s, the supervised
training of the network can be expressed by the following:

# Definition of the data points domain.

Domain(label="Points", data=X)

# Approximating the predicate A via a NN.

Predicate(label="A", domains=("Points"), function=NN_A)

# Fit the supervisions
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PointwiseConstraint(NN_A, y_s, X_s)

Let’s now assume that we want to express manifold regularization (see
equation (4.6)) with respect to a certain closeness relation for the learned
function, i.e. points that are close should be similarly classified. This can be
expressed as:

# Predicate stating whether two patterns are close.

Predicate("Close", ("Points","Points"), f_close)

# Manifold regularization constraint.

Constraint("forall p:forall q: Close(p,q)->(A(p)<->A(q))")

where f close is a given function determining if two patterns are close. The

training is then re-executed starting from the same initial conditions as in the

supervised-only case. Figure 6.3 shows the class assignments of the patterns

in the test set, when using only learning from supervised examples. Finally,

Figure 6.3 presents the assignments when learning from examples and con-

straints.

Collective Classification

Collective classification (see Sec. 5.3) performs the class assignments exploit-

ing any known correlation among the test patterns. Here we show how to

exploit these correlations in LYRICS. We assume that the patterns are rep-

resented as R2 datapoints. The classification task is a multi-label problem

where the patterns belong to three classes A,B,C. In particular, the class

assignments are defined by the following membership regions:

A = [−2, 1]× [−2, 2],B = [−1, 2]× [−2, 2],C = [−1, 1]× [−2, 2] .

These regions correspond to three overlapping rectangles as shown in Fig-
ure 6.4-(a). The examples are partially labeled and drawn from a uniform
distribution on both the positive and negative regions for all the classes. In a
first stage, the classifiers for the three classes are trained in a supervised fash-
ion using a two-layer neural network taking four positive and four negative
examples for each class. This is implemented via the following declaration:

Domain(label="Points", data=X)

Predicate(label="A",domains=("Points"),NN_A)

Predicate(label="B",domains=("Points"),NN_B)
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Figure 6.4: Collective classification: (a) class assignments; (b) the predictions after

the supervised step; (c) the predictions with collective classification and rule satis-

faction.

Predicate(label="C",domains=("Points"),NN_C)

PointwiseConstraint(NN_A, y_A, X_A)

PointwiseConstraint(NN_B, y_B, X_B)

PointwiseConstraint(NN_C, y_C, X_C)

The test set is composed by 256 random points and the assignments per-
formed by the classifiers after the training are reported in Figure 6.4-(b). In
a second stage, some prior knowledge about the task is exploited. In par-
ticular, any pattern must belongs to (at least) one of the classes A or B.
Furthermore, it is known that class C is defined as the intersection of A and
B. The classifiers trained in the first stage provide some initial predictions
for each pattern, while the collective classification step is performed by seek-
ing the class assignments that are as close as possible to the initial classifier
predictions but also respect the logical constraints on the test set:

Constraint("forall x: A(x) or B(x)")

Constraint("forall x:(A(x) and B(x)) <-> C(x)")

# Minimize the distance from prior values

PointwiseConstraint(NN_A, priorsA, X_test)

PointwiseConstraint(NN_B, priorsB, X_test)

PointwiseConstraint(NN_C, priorsC, X_test)

where X test denotes the set of test datapoints and priorsA, priorsB, priorsC

denote the outputs of the classifiers acting as priors for the final assignments.

As we can see from Figure 6.4-(c), the collective step fixes some wrong pre-

dictions.



6.3. Example Driven Presentation of LYRICS 121

Rule induction and model checking

It is also possible to mark a set of constraints as test only, in order to perform
model checking. Model checking can be used as a fundamental step to perform
rule induction using the ILP techniques [109]. In this example, we show how
the framework can be used to infer rules and perform model checking. A
brute force approach is applied here, but the inductive logic programming
community has designed more scalable algorithms that could be exploited [25].
Let us consider a simple multi-label classification task where the patterns
belong to two classes A and B, and B is contained in A. This case models a
simple hierarchical classification task. In particular, the classes are defined by
the following membership regions: A = [−2, 2]×[−2, 2], B = [−1, 1]×[−1, 1].
A set of points X is drawn from a uniform distribution in the [−3, 3]×[−3, 3]
region. Two neural network classifiers are trained to classify the points:

Domain(label="Points", data=X)

Predicate(label="A", domains=("Points"), NN_A)

Predicate(label="B", domains=("Points"), NN_B)

PointwiseConstraint(NN_A, y_A, X)

PointwiseConstraint(NN_B, y_B, X)

It could be interesting to discover which logical relations are learned by the
classifiers. In order to achieve this goal, we build all possible formulas in
Disjunctive Normal Form (DNF) that are universally quantified with a single
variable. One constraint is built and evaluated for each formula, and LYRICS
measures the degree of satisfaction of the rule over the data. In the considered
task, an example of a constraint getting a very high degree of satisfaction is:

Constraint("forall x: (not A(x) and not B(x)) or (A(x) and not B(x))

or (A(x) and B(x))")

As one could expect, the only fully-satisfied constraint is given by the following

FOL formula ∀x¬B(x) ∨A(x), or for simple ∀xB(x)→ A(x), that states the

inclusion of B in A.

Logic Reasoning

The presented framework can be used as a tool for pure logical reasoning.
This case is illustrated by the following example, where few individuals are
separately added to the domain People without any underlying data repre-
sentation (no features) by the statement:
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Domain(label="People")

Individual(label="Marco", "People")

Individual(label="Giuseppe", "People")

Individual(label="Michele", "People")

Individual(label="Francesco", "People")

Individual(label="Franco", "People")

Individual(label="Andrea", "People")

The individuals are assumed to be related via parental relations defined by
the following predicates, where the given binary predicate eq holds true if and
only if the two input individuals are the same person:

Predicate("father", ("People","People"))

Predicate("grandFather", ("People","People"))

Predicate("eq", ("People","People"), eq)

In addition, some known relations are known among the individuals:

Constraint("father(Marco, Giuseppe)")

Constraint("father(Giuseppe, Michele)")

Constraint("father(Giuseppe, Francesco)")

Constraint("father(Franco, Andrea)")

The prior knowledge provided for this task expresses some well-known
semantics about parental constraints. For example, it is possible to express
that nobody can be father or grandfather of himself as:

Constraint("forall x: not father(x,x)")

Constraint("forall x: not grandFather(x,x)")

Other two rules state that fathership is an asymmetric relation, so that if you
are father or grandfather of someone, he can not be your father or grandfather.
Furthermore, someone cannot be father and grandfather of someone at the
same time, these are expressed as:

Constraint("forall x: forall y: father(x,y) -> not father(y,x)")

Constraint("forall x: forall y: grandFather(x,y) -> not grandFather(

y,x)")

Constraint("forall x: forall y: father(x,y) -> not grandFather(x,y)"

)

Constraint("forall x: forall y: grandFather(x,y)->not father(x,y)")
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Other rules express that the father of the father is a grandfather, and that
one person has at most one father in the considered world:

Constraint("forall x: forall y: forall z: father(x,z) and father(z,y

) -> grandFather(x,y)")

Constraint("forall x: forall y: forall z: (father(x,y) and not eq(x,

z)) -> not father(z,y)")

The learning task seeks to infer the unknown relations among the individ-

uals. After starting the learning phase, the predicate values are returned for

all the groundings and some facts are correctly concluded. For instance:

grandFather(”Marco”, ”Michele”) ,

¬grandFather(”Marco”, ”Giuseppe”) ,

grandFather(”Marco”, ”Francesco”) ,
...

On the other hand, nothing can be concluded regarding who is the grandfather
of “Franco” and “Andrea”, so leaving these values to be equal to their prior
values. Once the training has been performed and the grounded predicates
have been computed, model checking can be performed by stating the rules
that should be verified. For example:

Constraint("forall x: forall y: forall z: grandFather(x,z) and

father(y,z) -> father(x,y)")

As expected, the evaluation of the rule returns that it is perfectly verified by

the computed assignments.

Missing Features

A set of patterns are drawn from a double moon shaped distribution as shown
in Figure 6.5-(a). The patterns distributed along the lower moon belong to
class A, while patterns along the higher one do not. This task is expressed
as:

Domain(label="Points", data=X)

Predicate("A", "Points", NN_A)

PointwiseConstraint(NN_A, y_A, X)
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Let us now assume that there are two new individuals p0 and p1 for which no
feature representation is available, but it is known that p0 and p1 belong and
do not belong to class A, respectively. This can be expressed as:

Individual(label="p0", ("Points"))

Individual(label="p1", ("Points"))

Constraint("A(p0)")

Constraint("not A(p1)")
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Figure 6.5: Missing Features: (a) data provided with positive or negative super-

vision for class A and initial random positions of points p0 and p1 (b) learned final

positions of p0 and p1, after the further constrains are enforced.

We assume to know in advance that the two individuals are close to a positive
and a negative example for class A, respectively. This can be stated as:

Predicate("Close", ("Points","Points"), close)

Predicate("eq", ("Points", "Points"), eq)

Constraint("exists q: not eq(q,p0) and A(q) and Close(q,p0)")

Constraint("exists q: not eq(q,p1) and not A(q) and Close(q,p1)")

where close is a given predicate deciding whether two points are close and eq

implements a differentiable equality function defined by: 1− tanh(||x− y||2).

Since the feature representations of p0 and p1 are not defined and are

left as free variables, the framework can learn them in order to respect the

constraints defined by the logic rules. Figure 6.5-(b) shows the values of

individuals after training. They have been correctly placed, where the data

distribution of the corresponding classes of the points is high.
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6.4 Generative Learning and Visual Translation

So far, we introduced the syntax of LYRICS, a general interface layer for AI,

and we provided a list of examples in different learning and reasoning sce-

narios to enlighten its potential expressiveness. In this section, we propose a

general approach to visual generation that combines learning capabilities with

logic descriptions of the target to be generated. The process of generation is

regarded as a constrained satisfaction problem, where the constraints describe

a set of properties that characterize the target. In particular, we propose an

example of pattern generation and the modeling of Generative Adversarial

Networks (GANs) [56] reporting promising results in image translation of hu-

man faces. GANs have achieved impressive results in image generation. By

taking inspiration from the Turing test [146], a generator function is asked to

fool a discriminator function which, in turn, tries to distinguish real samples

from generated ones. This mechanism allows GANs to generate very realistic

images when trained properly.

The systematic adoption of deep learning to visual generation has recently

produced impressive results that, amongst others, definitely benefit from the

massive exploration of convolutional architectures. A special generation task

is image-to-image translation, which learns to map each image of an input do-

main into an image in a (possibly different) output domain. In most real-world

domains, there are no pairs of examples showing how to translate an image

into a corresponding one in another domain, yielding the so called UNsuper-

vised Image-to-image Translation (UNIT) problem. In an UNIT problem, two

independent sets of images belonging to two different domains (e.g. cats-dogs,

male-female, summer-winter, etc.) are given and the task is to translate an

image from one domain into the corresponding image in the other domain,

even though there exist no paired examples showing this mapping. Unfor-

tunately, estimating a joint distribution of the images in the two domains

from the distributions in the original single domains is known to have infinite

possible solutions. Therefore, one possible strategy consists in mapping pairs

of corresponding images to the same latent space using auto-encoders and

then learning to reconstruct an image from its representation in latent space.

Combining auto-encoders with GANs has been proposed in [87,127] and out-

standing results on image translation have been reported by [90,91,155].
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In the following, we propose a general approach to visual generation and

translation that combines learning capabilities with logic descriptions of the

images that are generated. The generation problem is translated into a con-

strained satisfaction problem, where each constraint forces the generated im-

age to have some predefined feature. A main advantage of this approach is

to decouple the logic description level from the generative models. The logic

layer is architecture agnostic, allowing us to inject any generator model based

on deep learning into the logic layers. In particular, expressing the task using

logic knowledge allows us to easily extend the involved classes to additional

translation categories as well as yielding an easier to understand learning

scheme. The translations are then interleaved and jointly learned using the

constraints generated by the framework that allow us to obtain truly realistic

images on different translation types. Finally, the experiments show how to

formulate an image-to-image task using logic, including adversarial tasks with

cycle consistency. The declarative approach allows us to easily interleave and

jointly learn an arbitrary number of translation tasks.

6.4.1 Expressing an Adversarial Setting by FOL

Here we show how the discriminative and generative parts of an image-to-

image translation system can be formulated by merging logic and learning,

yielding a more understandable and easier to extend setup. Let us assume

to be given a set of images I. There are two components of a translator

framework to be considered. First, a set of generator functions gj : I → I,

which take as input an image representation and return a corresponding image

in the same output domain, depending on the semantics given to the task.

Second, a set of discriminator functions di : I → [0, 1] determining whether

an input image x ∈ I belongs to class i and, thus, they must be intended in a

more general way than in traditional GANs. Interestingly, all learnable FOL

functions (i.e. functions mapping input elements into an output element) can

be interpreted as generator functions and all learnable FOL predicates (i.e.

functions mapping input elements into a truth value) can be interpreted as

discriminator functions.

The discriminators can be trained by providing some examples in the
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original domains as:

∀xSi(x)⇒ di(x), i = 1, 2, . . .

where Si(x) is a given function returning true if and only if an image is a

positive example for the i–th discriminator. These constraints allow us to

transfer the knowledge provided by the supervision (i.e. the Si(x)) inside the

discriminators that are learnable functions.

Moreover, di(x) functions are differentiable and can be exploited to train

the generators functions. To this end, assuming that a generator function has

to produce an image with a certain property, we can force the corresponding

discriminator function for such a property to positively classify it. Therefore,

assuming that the goal of the j–th generator is to generate images of class j,

this can be typically expressed by a rule taking the form:

∀x dj(gj(x)), j = 1, 2, . . .

In perspective, the logical formalism could provide a simple way to describe

complex behaviors of generator functions by interleaving multiple positive or

negative discriminative atoms. By requiring that a generated image should

appear realistic, the GAN framework implements a special case of these con-

straints, where the required property is the similarity with real images.

Cycle consistency [155] is also commonly employed to impose that by

translating an image from a domain to another one and then translating it

back to the first one, we should recover the input image. Cycle consistency

allows us to restrict the number of possible translations, especially when con-

catenating different generative functions. This can be formulated in FOL

as:

∀x Si(x)⇒ gi(gj(x)) = x, i = 1, 2, . . . , j = 1, 2, . . .

Clearly, in complex problems, the chain of functions intervening in these con-

straints can be longer, but the main idea remains exactly the same.

Sometimes, images belonging to different classes are required to share the

same common latent space. Let us indicate e : I → Rn an encoding function

mapping the image into a latent space, that has to be jointly learned during

the learning phase. In this special case, the generators must be re-defined
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as decoder functions taking as input the latent representation of the images,

namely: gj : Rn → I. The auto-encoding constraints can be expressed as:

∀x Si(x)⇒ gi(e(x)) = x, i = 1, 2, . . .

Up to now, the described constraints are very general and they can be

exploited in almost all generative translation tasks. However, as we will see

in the next section, the logical formalism (and the LYRICS environment)

allows the enforcement of any additional knowledge about the task.

6.4.2 Experimental Results

In this section, we show how to effectively setting up some generation (and

eventually adversarial) tasks in LYRICS, exploiting the constraints schema de-

scribed in the previous section about generative and discriminative functions.

In what follows, in order to not overload the notation, instead of expressing

the constraints in the LYRICS syntax, we directly make use of FOL.

Next and Previous Digits Generation

As a toy example, we show a task in which we are asked to learn two generative

functions, next and previous, which, given an image of a 0, 1, 2 digit, return

an image of a digit that is respectively, the next and previous with respect to

the natural number order. In order to give each image a next and a previous

digit in the chosen set, a circular mapping was used such that 0 is the next

digit of 2 and 2 is the previous digit of 0.

The functions next and previous are implemented by feedforward neural

networks with 50 neurons and 1 hidden layer. Since the outputs of such func-

tions are still images, the output size of the networks is equal to the input size.

A 1-hidden layer radial basis function (RBF) with a 3-sized softmax output

layer is used to implement the zero, one and two discriminators bound to the

three outputs of the network, respectively. The RBF model, by constructing

closed decision boundaries, allows the generated images to resemble the input

ones. Finally, let isZero, isOne and isTwo be three given functions, defined

on the input domain, returning 1 only if an image is a 0, 1 or 2, respectively.

They play the role of the functions Si(x) that have been previously described.
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The idea is to solve both a classification and a generation task. The first

one aims at identifying which digit an image represents, while the generation

task aims at learning generative functions without giving any direct supervi-

sion to them, but simply requiring that the generation is consistent with the

classification performed by the jointly learned classifiers.

The classification problem can be described by the following constraints

to learn the discriminators

∀x isZero(x)⇒ zero(x)

∀x isOne(x)⇒ one(x)

∀x isTwo(x)⇒ two(x)

while the following ones express that the generative functions are constrained

to return images which are correctly recognized by the discriminators

∀x zero(x)⇒ one(next(x)) ∧ two(previous(x))

∀x one(x)⇒ two(next(x)) ∧ zero(previous(x))

∀x two(x)⇒ zero(next(x)) ∧ one(previous(x))

In addition, in order to force the generated images to be more realistic, we can

ask they are similar to at least one existing digit in the domain, by enforcing

the following constraints:

∀x ∃y (isZero(x) ∧ isOne(y))⇒ next(x) = y

∀x ∃y (isZero(x) ∧ isTwo(y))⇒ previous(x) = y

∀x ∃y (isOne(x) ∧ isTwo(y))⇒ next(x) = y

∀x ∃y (isOne(x) ∧ isZero(y))⇒ previous(x) = y

∀x ∃y (isTwo(x) ∧ isZero(y))⇒ next(x) = y

∀x ∃y (isTwo(x) ∧ isOne(y))⇒ previous(x) = y

Finally, the cycle consistency constraints for the digit generators can be ex-

pressed by:
∀xnext(previous(x)) = x

∀x previous(next(x)) = x .

The equality operator can be validated according to the considered task. In

these constraints, we take a given binary predicate computing a pixel by pixel

similarity between the images and defined as 1− tanh( 1
P

∑
p |xp − yp|) where

xp and yp are the p-th pixels of the images x, y.
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Figure 6.6: An example of the trained generative functions. The first column

pictures represents the input images. The second and third column pictures show

the outputs of the functions next and previous, respectively, computed on the input

image.

We test this idea by taking a set of around 15000 images of handwritten

characters, obtained extracting only the 0, 1 and 2 digits from the MNIST

dataset. The mentioned constraints have been expressed in LYRICS and the

model computational graphs have been bound to the predicates. Figure 6.6

shows an example of image translation using this schema, where the image

on the left is an original MNIST image and the two right images are the

output of the next and previous generators. The simplicity of the task,

the particular discriminators models and the availability of a rich knowledge

about the images domain make it possible for the generative functions to

produce realistic images without the need of an adversarial approach. This

will not be the case of the experiments presented in the next section where

an adversarial approach is, instead, indispensable and its use appears to be

naturally incorporated into our logical framework.

Before proceeding, we want to dwell on the possibilities of this approach

after an example has been provided. The declarative nature of the logical for-

malism and its subsequent translation into real-valued constraints, exploited

as loss functions of an optimization problem, enables the construction of very

complex generative problems by means of only a high-level semantic descrip-

tion. By exploiting models inherited from the literature, a final user is allowed

to face the most different problems with the minimum implementation effort.
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Experiments on Image Translation

In the following, we show a real image-to-image translation task applying

the general setup described in the previous section, including auto-encoders,

GANs and cycle consistency. The declarative nature of the formulation makes

it very easy to add an arbitrary number of translation problems and it allows

us to easily learn them jointly.

UNIT translation tasks assume that there are no pairs of examples show-

ing how to translate an image into a corresponding one in another domain.

Combining auto-encoders with GANs is the state-of-the-art solution for tack-

ling UNIT generation problems [90,91,155]. In this section, we show how this

state-of-the-art adversarial setting can be naturally described and extended by

the proposed logical and learning framework. Furthermore, we show how the

logical formulation allows a straightforward extension of this application to a

greater number of domains. The CelebFaces Attributes dataset [92] was used

to evaluate the proposed approach, where celebrities face images are labeled

with various attributes gender, hair color, smiling, eyeglasses, etc. Images are

defined as 3D pixel tensors with values belonging to the [0, 1] interval. The

first two dimensions represent width and height coordinates while the last

dimension indexes among the RGB channels.

Gender Translation We used the Male attribute to divide the entire

dataset into two input categories, namely male and female images. In the

following SM (x) and SF (x) (such that ∀x SF (x) ⇔ ¬SM (x)) are two given

predicates holding true if and only if an image x is or is not tagged with

the male tag. Let e be an encoding function mapping images into the latent

domain Z = Rn. The encoders are implemented as multilayer convolutional

neural networks with resblocks [65], leaky-ReLU activation functions and in-

stance normalization at each layer (see [90] for a detailed description of the

architecture). The generative functions gM and gF map vectors of the domain

Z into images. These functions are implemented as multilayer transposed

convolutional neural networks (also called “deconvolutions”) with resblocks,

leaky-ReLU activation functions and instance normalization at each layer. To

implement the shared latent space assumption, gM and gF share the param-

eters of the first layer. The functions dM and dF are trained to discriminate
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whether an image is real or it has been generated by the gM and gF generator

functions. For example, if x and y are two images such that SM (x), SF (y)

hold true, then dM (x) should return 1 while dM (gM (e(y))) should return 0.

The architectures of the models implementing e, dM , dF , gM , gF are replicated

from some state-of-the-art models [90,91,155]. All these papers show that the

use of convolutional models in conjunction with resblocks and instance nor-

malization allows us to obtain truly realistic and high definition images.

The problem can be described as follows. First, we look at the constraints

that the encoding and generative functions need to satisfy. We ask the encoder

and the generator of the same domain to be circular, that is to map the input

into itself, as in the autoencoding scheme proposed by Liu et al. [90]:

∀x SM (x)⇒ gM (e(x)) = x (6.5)

∀x SF (x)⇒ gF (e(x)) = x (6.6)

where the equality operator comparing two images is bound to a continuous

and differentiable function computing a pixel by pixel similarity between the

images, defined as 1−tanh( 1
P

∑
p |xp−yp|) where xp and yp are the p-th pixels

of the x and y images and P is the total number of pixels.

Cycle consistency is also imposed as described in the previous section as:

∀x SM (x)⇒ gM (e(gF (e(x))) = x (6.7)

∀x SF (x)⇒ gF (e(gM (e(x))) = x (6.8)

where the same equality operator is used to compare the images.

Finally, the generated images must fool the discriminators so that they

will be detected as real ones as:

∀x SM (x)⇒ dF (gF (e(x))) (6.9)

∀x SF (x)⇒ dM (gM (e(x))) (6.10)

On the other hand, the discriminators must correctly discriminate real

images from generated ones by the satisfaction of the following constraints:

∀x SM (x)⇒ dM (x) ∧ ¬dF (gF (e(x))) (6.11)

∀x SF (x)⇒ dF (x) ∧ ¬dM (gM (e(x))) (6.12)
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Figure 6.7: Face Gender Translation: male to female. The top row shows

input male images whereas the bottom row shows the corresponding generated female

images.

Figure 6.8: Face Gender Translation: female to male. The top row shows

input female images whereas the bottom row shows the corresponding generated male

images.

Using logical constraints allows us to give a clean and easy formulation

of the adversarial setting. Indeed, the adversarial constraints can be inter-

preted as all others constraints which exploit classification functions. These

constraints force the generative function to produce samples that are cate-

gorized in the desired class by the discriminator. Moreover, the decoupling

between the models used to implement the functions and the description of

the problem makes really straightforward to extend or transfer this setting.

The task is implemented in LYRICS exploiting the Product logic to con-

vert the connectives and the quantifiers aggregating all the groundings in the

FOL formulas described so far. As we saw (see equation (6.4)), the selection

of this t-norm is particularly suited for this task because it defines a cross-

entropy loss on the output of the discriminators, which is the loss that was also

used to train these models in their original setup. The functions e, gM and gF



134 6. LYRICS

Figure 6.9: Face Gender Translation: male/female to eyeglasses. The top

row shows input male/female images whereas the bottom row shows the correspon-

dent generated faces with eyeglasses.

are trained to satisfy the constraints defined in (6.5)–(6.10), while the func-

tions dM and dF are trained to satisfy the constraints (6.11), (6.12). Weight

learning for the models was performed using the Adam optimizer with a fixed

learning rate equal to 0.0001. Figures 6.7 and 6.8 show some male-to-female

and female-to-male translations, respectively.

Adding Eyeglasses Given this setting, we can integrate a third domain in

the overall problem adding the corresponding constraints for this class. Let

SE(x) be a given predicate holding true if and only if an image x is tagged

with the eyeglasses tag in the dataset. Let gE(x) be the corresponding gener-

ator and dE(x) the corresponding discriminator for this property. The same

network architectures of the previous description are employed to implement

dE and gE . The addition of this third class requires to add the following

constraints for the generators, to be integrated with the male and female
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classes,

∀x SM (x)⇒ dE(gE(e(x)))

∀x SF (x)⇒ dE(gE(e(x)))

∀x SE(x)⇒ gE(e(x)) = x

∀x SM (x) ∧ SE(x)⇒ dE(gF (e(x)))

∀x SF (x) ∧ SE(x)⇒ dE(gM (e(x)))

∀x SM (x) ∧ SE(x)⇒ gE(e(gF (e(x))) = gF (e(x))

∀x SF (x) ∧ SE(x)⇒ gE(e(gM (e(x))) = gM (e(x))

∀x SM (x) ∧ ¬SE(x)⇒ gM (e(gE(e(x))) = gE(e(x))

∀x SF (x) ∧ ¬SE(x)⇒ gF (e(gE(e(x))) = gE(e(x))

and to add the following for the discriminator:

∀x SE(x)⇒ dE(x)

∀x SM (x) ∧ ¬SE(x)⇒ ¬dE(gE(e(x)))

∀x SF (x) ∧ ¬SE(x)⇒ ¬dE(gE(e(x)))

We note that in this case, the class eyeglasses is not mutually exclusive neither

with male nor female class. This is the reason why we have to consider some

constraints with a conjunction on premises. In addition, we have to distin-

guish how the male and female generators behave in presence of the attribute

eyeglasses. In particular we enforce that translating a gender attribute does

not affect the presence of eyeglasses. Figure 6.9 shows some examples of the

original face images, and the corresponding generated images of the faces with

added eyeglasses.

As we already said, the proposed approach is very general and can be

exploited to manage possibly several attributes in a visual generation task

combining a high-level logical description with deep neural networks. The

most distinguishing property is the flexibility of describing new generation

problems by simple logic descriptions, which leads to attack very different

problems. Instead of looking for specific hand-crafted cost functions, the pro-

posed approach offers a general scheme for their construction that arises from

the t-norm theory. Moreover, the interleaving of different image translations
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tasks allows us to accumulate a knowledge base that can dramatically fa-

cilitate the construction of new translation tasks. The experimental results

shows the flexibility of the proposed approach, which makes it possible to deal

with realistic face translation tasks.



Chapter 7

Deep Logic Models

Blending symbolic and sub-symbolic techniques is one of the most challenging

open problem in AI and, recently, a lot of works, often referred as neuro-

symbolic approaches [45], have been proposed by several authors [16, 64, 95,

124,125]. In previous chapters, we already discussed some of the most studied

frameworks combining machine learning techniques and logical inference, and

in Ch. 6 we presented a new system called LYRICS, providing an interface

to integrate both of these approaches. However, all these frameworks present

some drawbacks and limitations. For instance, Probabilistic Soft Logic builds

an undirected graphical model to represent a grounded FOL knowledge base

and, employing a differentiable approximation of FOL, it allows to learn the

weight of each formula in the KB by maximizing the log–likelihood of the

training data. However, PSL focuses on logic reasoning without any solid

integration with deep learners, beside a simple stacking with no joint train-

ing. On the other hand, systems like Semantic–Based Regularization, Logic

Tensor Network, or LYRICS overcome this limitation exploiting kernel ma-

chines or other machine learning architectures to learn regularities from data.

All these frameworks share the same basic idea of integrating logical reason-

ing and learning using a continuous relaxation of logic. However, this class

of approaches considers the reasoning layer as frozen, without allowing to

jointly train its parameters. This is a big limitation, as these methods work

better only with hard constraints, while they are less suitable in presence of

reasoning under uncertainty.

In this chapter, we present a new class of models allowing to overcome

the main drawbacks of existing approaches that are called Deep Logic Models

(DLMs) [97], which is recently developed and an ongoing study. DLMs pro-

vide a unified framework to integrate probabilistic logic reasoning and deep

learning, exploiting both an input layer processing the sensorial input pat-
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terns and a higher level which enforces some structure to the model output.

Unlike in Semantic–based Regularization [34] or Logic Tensor Networks [38],

the sensorial and reasoning layers can be jointly trained, so that the high-

level weights imposing the output structure are jointly learned together with

the neural network weights, processing the low-level input. The bonding is

very general as any (set of) deep learners can be integrated and any output

structure can be expressed.

Definition of the Model

We indicate as θ the model parameters, and X the collection of input sensorial

data. Deep Logic Models (DLMs) assume that the prediction of the system

is constrained by the available prior knowledge. Therefore, unlike standard

neural networks which compute the output via a simple forward pass, the

output computation in DLM can be decomposed into two stages: a low-

level stage processing the input patterns, and a subsequent semantic stage,

expressing constraints over the output and performing higher level reasoning.

We indicate by y = {y1, . . . , yn} and by f = {f1, . . . , fn} the two multivariate

random variables corresponding to the output of the model and to the output

of the first stage respectively, where n > 0 denotes the dimension of the

model outcomes. Assuming that the input data is processed using neural

networks, the model parameters can be split into two independent components

θ = {w,λ}, where w is the vector of weights of the networks fnn and λ

is the vector of weights of the second stage, controlling the semantic layer

and the constraint enforcement. Figure 7.1 shows the graphical dependencies

among the stochastic variables that are involved in our model. The first layer

processes the inputs returning the values f using a model with parameters

w. The higher layer takes as input f and applies reasoning using a set of

constraints, whose parameters are indicated as λ, then it returns the set of

output variables y.

The Bayes rule allows to link the probability of the parameters to the

posterior and prior distributions:

p(θ|y,X ) ∝ p(y|θ,X )p(θ) .

Assuming the prior may be decomposed into a sensorial and a semantic level,
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Figure 7.1: The DLM graphical model assumes that the output variables y depend

on the output of first stage f , processing the input X . This corresponds to the

breakdown into a lower sensorial layer and a high level semantic one.

namely p(θ) = p(λ)p(w), and that the posterior can be marginalized over the

assignments for f and approximated to the outputs of the neural architectures:

p(y|θ,X ) ≈ p(y|fnn,λ) .

where fnn denotes the actual output of the networks fnn over the inputs.

Definition 7.1 (Deep Logic Models). A Deep Logic Model assumes that

p(y|fnn,λ) is modeled via an undirected probabilistic graphical model in the

exponential family, such that:

p(y|fnn,λ) =
1

Z(θ)
exp

(
Φr(y,fnn) +

∑
c

λcΦc(y)

)
, (7.1)

where Φr and Φc are two potential functions expressing the closeness between

the output of DLM and the output of the neural networks, and the satisfaction

of the c–th logical constraint. The partition function Z depends on both the

neural network parameters w by means of fnn and the constraint weights λc,

and is defined as follows:

Z(θ) =

∫
y

exp

(
Φr(y,fnn) +

∑
c

λcΦc(y)

)
dy .
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MAP Inference

MAP inference assumes that the model parameters are known and it aims

at finding the assignment maximizing p(y|fnn,λ). MAP inference does not

require to compute the partition function Z which acts as a constant when

the weights are fixed. Therefore:

yM = argmax
y

log p(y|fnn,λ) = argmax
y

[
Φr(y,fnn) +

∑
c

λcΦc(y)

]
.

The above maximization problem can be optimized via gradient descent by

computing:

∇y log p(y|fnn,λ) = ∇yΦr(y,fnn) +
∑
c

λc∇yΦc(y)

Learning

Training can be carried out by maximizing the likelihood of the training data:

argmax
θ

log p(θ|yt,X ) = log p(yt|θ,X ) + log p(w) + log p(λ) .

In particular, assuming that p(yt|θ,X ) follows the model defined in equation

(7.1) and the parameter priors follow Gaussian distributions, we get:

log p(θ|yt,X )=−α
2
||w||2 − β

2
||λ||2 − Φr(yt,fnn) +

∑
c

λcΦc(yt)− logZ(θ)

where α, β are meta-parameters determined by the variance of the selected

Gaussian distributions. Also in this case the likelihood may be maximized

by gradient descent using the following derivatives with respect to the model

parameters:

∂ log p(θ|yt,X )
∂λc

= −βλc + Φc(yt)− Ep [Φc]

∂ log p(θ|yt,X )
∂wi

= −αwi + ∂Φr(yt,fnn)
∂wi

− Ep
[
∂Φr
∂wi

]
Unfortunately, the direct computation of the expected values in the above

derivatives is not feasible. A possible approximation [55, 63] relies on replac-

ing the expected values with the corresponding value at the MAP solution,



141

assuming that most of the probability mass of the distribution is centered

around it. This can be done directly on the above expressions for the deriva-

tives or in the log likelihood:

log p(yt|fnn,X ) ≈ Φr(yt,fnn)− Φr(yM ,fnn) +
∑
c

λc (Φc(yt)− Φc(yM ))

From the above approximation, it emerges that the likelihood tends to be

maximized when the MAP solution is close to the training data, namely

if Φr(yt,fnn) ' Φr(yM ,fnn) and Φc(yt) ' Φc(yM ) ∀c. Furthermore, the

probability distribution is more centered around the MAP solution when

Φr(yM ,fnn) is close to its maximum value. We assume that Φr is negative

and have zero as upper bound: Φr(y,fnn) ≤ 0 ∀y,fnn, like it holds for the

already mentioned negative quadratic potential Φr(y,fnn) = −1
2 ||y− fnn||

2.

Therefore, the constraint Φr(yt,fnn) ' Φr(yM ,fnn) is transformed into the

two separate constraints Φr(yt,fnn) ' 0 and Φr(yM ,fnn) ' 0.

This means that, given the current MAP solution, it is possible to increase

the log likelihood by computing the gradient and weight updates using the

following cost function:

log p(w) + log p(λ) + Φr(yt,fnn) + Φr(yM ,fnn) +
∑
c

λc [Φc(yt)− Φc(yM )]

In this paper, a quadratic form for the priors and the potentials is selected, but

other choices are possible. For example, Φr(·) could instead be implemented

as a negative cross–entropy loss. Therefore, replacing the selected forms for

the potentials and changing the sign to transform a maximization into a min-

imization problem, yields the following cost function, given the current MAP

solution:

Cθ(yt,yM ,X ) =
α

2
||w||2 +

β

2
||λ||2 +

1

2
||yt − fnn||2 +

1

2
||yM − fnn||2 +

+
∑
c

λc [Φc(yt)− Φc(yM )] .

Minimizing the cost function Cθ(yt,yM ,X ) is just a local approximation

of the full likelihood maximization for the current MAP solution. Therefore,

the training process alternates the computation of the MAP solution, the

computation of the gradient for Cθ(yt,yM ,X ) and one weight update step.
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Please note that, for any constraint c, the parameter λc admits also a negative

value. This is in case the c–th constraint turns out to be too satisfied by the

actual MAP solution with respect to the satisfaction degree on the training

data.



Chapter 8

Conclusions and Future Work

This chapter summarizes the work presented in this thesis, by enlightening

both the main contributions of the research and some related consequences.

In addition, some possible future directions are discussed as well as some

promising development of the presented framework.

8.1 Concluding Remarks

In the following, we discuss some aspects of the main results we provided as

well as some related issues.

Mapping Logical Formulas into Loss Functions

In this thesis we proposed a theoretical framework that allows us to convert

first–order logic formulas into functional constraints that can be embedded

into the training procedure for a learning agent. In this respect, the main con-

tribution of this work is the characterization of the fragment of  Lukasiewicz

logic yielding convex constraints. This result may be exploited in several

learning schemata where FOL formulas provide prior-knowledge and in par-

ticular, we discuss the case of kernel machines and collective classification,

together with some experimental analysis. Indeed in principle, whenever we

are given a set of logical formulas, we can translate them into an equiva-

lent form with only conjunctions, disjunctions and negations on propositional

variables. Then if we translate them by the convex fragment of  L, the con-

straints turn out to be convex and also equivalent to a set of linear constraints.

Convexity in general allows the definition of more efficient methods for the op-

timization process at the basis of the learning process and we show how both

kernel machines and collective classification can be formulated by quadratic
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programming.

A deeper analysis relates the mapping of t-norm fuzzy logic functional

representation of formulas to the generator function of the considered t-norm

(if it has any). This approach may be applied in case of generated archimedean

t-norms, e.g.  Lukasiewicz and Product logics and we show some examples of

how formulas may be mapped to functional constraints exploiting the additive

generator function. This allows us to recover classic machine learning loss

functions (e.g. the cross–entropy loss) and also to produce a wide class of

new ones by varying the generator functions.

Unnecessary Logical Constraints

In general, in learning from constraints, several constraints are combined into

an optimization scheme and often it is quite difficult to identify the contribu-

tion of each of them. In particular, some constraints could turn out to be not

necessary for the solution. In this thesis, we propose a formal definition of

unnecessary constraint as well as a method to determine which are the unnec-

essary constraints for a learning process in a multi-task problem. A crucial

role for the necessity of a certain constraint is played by consequence relations

among the constraints that are enforced at the same time. This is a reason

why logical constraints are suitable for this kind of investigation. At hand,

they are quite general to include both pointwise and consistency constraints.

In addition, we can exploit all the studies on truth preservation for formulas.

In particular, the logical consequence among formulas is a sufficient condition

to conclude that a constraint, corresponding to a certain formula, is unnec-

essary. However, we also provide an algebraic condition that turns out to be

both necessary and sufficient in case the problem is strictly-convex.

LYRICS

This thesis also presents a novel and general framework, called LYRICS, to

bridge logic reasoning and deep learning. The framework is directly imple-

mented in TensorFlow, allowing a seaming-less integration that is architecture

agnostic. The frontend of the framework is a declarative language based on

first–order logic. In particular, we present a set of examples illustrating the

generality and expressiveness of the framework that can be applied to a large
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range of tasks, including classification, pattern generation and symbolic rea-

soning. However, a special mention is reserved to visual generation tasks. A

distinguishing property of the approach is that the description of generation

problems using logic is very flexible and it allows us to tackle very different

translation problems with little effort. Instead of looking for specific hand-

crafted cost functions, the proposed approach offers a general scheme for their

construction that arises from the t-norm theory. Moreover, the interleaving of

different image translations tasks allows us to accumulate a knowledge base

that can facilitate the construction of new translation tasks. The experimental

results show the flexibility of the proposed approach, which makes it possible

to obtain very realistic images in the considered face translation tasks.

8.2 Future Work

In the following, we give an insight of possible future works. Such arguments

involve both the results presented in this thesis and a novel model we are

working on that has already sketched in Ch. 7.

Convex Fragment In principle any boolean FOL formula may be con-

verted according to the convex  Lukasiewicz fragment into a convex function.

However, as we already noticed in Sec. 4.1.3, this conversion can affect the

intuitive meaning associated to the initial formula. For instance, in Example

4.5 it is discussed the case of a mutual exclusion rule, namely we are inter-

ested in forcing that a certain pattern belongs to only one of two given classes.

We recall that in  Lukasiewicz logic, we are given two disjunctions, the weak

x∨ y = max{x, y} and the strong x⊕ y = min{1, x+ y}. This latter is in the

fragment yielding convex constraints while the former is not. However in this

case, the weak disjunction seems to better approximate the formula intent,

indeed it is satisfied if and only if x = 1 or y = 1, whereas the strong one it

is satisfied whenever x+ y ≥ 1.

Lines of research.

1. Considering a continuation method for different conversion options of a
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certain formula. For instance, for mutual exclusion we can consider

λ ·max{x, y}+ (1− λ) ·min{1, x+ y} ,

where λ ∈ [0, 1] is a combination parameter that controls the deviation

from the convex solution.

2. Extending the presented results to other contexts beside those already

considered, e.g. reinforcement learning, where logical rules could be

exploited to define the reward function, as for instance considered in [88].

Loss and Generators Given a fuzzy representation of formulas by a con-

tinuous archimedean t-norm T , we described some consequences of mapping

into functional constraints by an additive generator of T . However in prin-

ciple, one may think to introduce a new parameter in the loss function by

considering a parametric generator function, as introduced in Sec. 2.3.1.

Lines of research.

1. A promising idea we plan to investigate is the possibility to jointly learn

the loss function, once it is expressed by means of a t-norm parametrized

generator function.

In this view, one may think to learn or validate (e.g. by cross–validation) also

the loss function that is responsible of the learning process. Depending on

a certain parameter, we can determine the most effective loss function with

respect to a certain learning problem according to the available data.

Support Constraints In Sec. 5.2.2, we provide a formal definition of un-

necessary constraint for both the hard and soft case. However, we did not

prove any specific result for the soft-constraint case, indeed, the setting with

soft-constraints also depends on the presence of slack values and it requires

more investigations. In addition, for what concerns logical deduction, we

should consider different logical arguments to deal with intermediate degree

of consequence.

Lines of research.
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1. We plan to extend the algebraic results in propositions 5.2 and 5.3 to

unnecessary soft-constraints.

2. Consider other fuzzy logic consequence relations, such as the degree

preservation among arbitrary [0, 1]–values in formulas. Indeed, this kind

of consequence allows us to consider the truth preservation also for log-

ical constraints with not null slack variables.

Deep Logic Models In order to develop a new framework allowing to im-

prove existing approaches integrating probabilistic logic reasoning and deep

learning, in Ch. 7 we briefly introduce a new class of models, called Deep Logic

Models (DLMs). DLMs mainly focus on expressing the high-level structure

using logic formalism like first–order logic (FOL). In particular, a consistent

and fully differentiable relaxation of FOL is used to map the knowledge into a

set of potentials that can be used in training and inference. Moreover, DLMs

allow a relation to be encoded by any selected function (e.g. any deep neural

networks), which is co-trained during learning. Therefore, DLMs are capable

of a more powerful and flexible exploitation of the representation space.

Lines of research.

1. So far, Deep Logic Models have been validated only on some toy exam-

ples. For future works we plan to extend the experimental analysis to

more complex tasks in order to validate and improve the methodology.

2. Deep Logic Models also open up the possibility to iteratively integrate

rule induction mechanisms like the ones proposed by the Inductive Logic

Programming community [85, 116]. We plan to include in the learning

process a mechanism to infer new logical statements from examples.
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[13] Bröcheler, M., Mihalkova, L., Getoor, L.: Probabilistic similarity logic. In:

Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intel-

ligence. pp. 73–82. AUAI Press (2010)

[14] Bullen, P.S.: Handbook of means and their inequalities, vol. 560. Springer

Science & Business Media (2013)
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[95] Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T., De Raedt,

L.: Deepproblog: Neural probabilistic logic programming. arXiv preprint

arXiv:1805.10872 (2018)

[96] Marchioni, E., Wooldridge, M.:  Lukasiewicz games: A logic-based approach to

quantitative strategic interactions. ACM Transactions on Computational Logic

(TOCL) 16(4), 33 (2015)

[97] Marra, G., Giannini, F., Diligenti, M., Gori, M.: Integrating learning and

reasoning with deep logic models. arXiv preprint arXiv:1901.04195 (2019)

[98] Marra, G., Giannini, F., Diligenti, M., Gori, M.: Lyrics: a general interface

layer to integrate ai and deep learning. arXiv preprint arXiv:1903.07534 (2019)

[99] Mas, M., Monserrat, M., Torrens, J.: A characterization of (u, n), ru, ql and

d-implications derived from uninorms satisfying the law of importation. Fuzzy

Sets and Systems 161(10), 1369–1387 (2010)

[100] Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication

functions. IEEE Transactions on fuzzy systems 15(6), 1107–1121 (2007)

[101] Mayoh, B., Tyugu, E., Penjam, J.: Constraint programming, vol. 131. Springer

Science & Business Media (2013)



BIBLIOGRAPHY 159
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