Bibliography¶
- BNO04
Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding the cell’s functional organization. Nature reviews. Genetics, 5:101–13, 03 2004. doi:10.1038/nrg1272.
- BBS15
Anas Belahcen, Monica Bianchini, and Franco Scarselli. Web Spam Detection Using Transductive-Inductive Graph Neural Networks, pages 83–91. Springer International Publishing, Cham, 2015. URL: https://doi.org/10.1007/978-3-319-18164-6_9, doi:10.1007/978-3-319-18164-6_9.
- BM13
Monica Bianchini and Marco Maggini. Supervised neural network models for processing graphs. In Handbook on Neural Information Processing, volume 49 of Intelligent Systems Reference Library, pages 67–96. Springer, 2013.
- New10
Mark Newman. Networks: An Introduction. Oxford University Press, Inc., New York, NY, USA, 2010. ISBN 0199206651, 9780199206650.
- RTD+18
Alberto Rossi, Matteo Tiezzi, Giovanna Maria Dimitri, Monica Bianchini, Marco Maggini, and Franco Scarselli. Inductive-transductive learning with graph neural networks. In ANNPR. 2018.
- SGT+09a
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. Computational capabilities of graph neural networks. IEEE Transactions on Neural Networks, 20:81–102, 2009.
- SGT+09b
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph neural network model. IEEE Transactions on Neural Networks, 20:61–80, 2009.
- Spo03
Olaf Sporns. Graph Theory Methods for the Analysis of Neural Connectivity Patterns, pages 171–185. Springer US, Boston, MA, 2003. URL: https://doi.org/10.1007/978-1-4615-1079-6_12, doi:10.1007/978-1-4615-1079-6_12.