The problem of parameter estimation for an epidemic model is crucial for the forecasting of the infection spread. We discuss an approach for learning the time-variant parameters of the dynamic SIR model from data. We formulate the problem in terms of a functional risk that depends on the learning variables through the solutions of the dynamic SIR. The resulting variational problem is then solved using a gradient flow on a suitable, regularized, functional.
May 13th, 2020 – 11:00 AM
Conference Meeting
Description
We show preliminary results on the estimates performed on COVID-19 data relative to some Italian regions.
10 May 2020
| Category: Seminars