[Mar 2nd 2022] LabMeeting: Knowledge-driven Active Learning

Gabriele Ciravegna (University of Siena)

When: Mar 2nd, 2022 – 11:00 – 11:45 AM
Where: Google meet link

Knowledge-driven Active Learning

In the last few years, Deep Learning models have become increasingly popular. However, their deployment is still precluded in those contexts where the amount of supervised data is limited and manual labelling expensive. Active learning strategies aim at solving this problem by requiring supervision only on few unlabelled samples, which improve the most the model performances after adding them to the training set. Most strategies are based on uncertain sample selection, and even often restricted to samples lying close to the decision boundary. Here we propose a very different approach, taking into consideration domain knowledge. Indeed, in the case of multi-label classification, the relationships among classes offer a way to spot incoherent predictions, i.e., predictions where the model may most likely need supervision. We have developed a framework where first-order-logic knowledge is converted into constraints and their violation is checked as a natural guide for sample selection. We empirically demonstrate that knowledge-driven strategy outperforms standard uncertain strategies, particularly on those datasets where the domain knowledge is rich. Furthermore, we show how the proposed approach enables discovering data distributions lying far from initial training data.

 |  Category: Seminars