[Mar 4th 2020] LabMeeting: Human-Driven FOL Explanations of Deep Learning

Gabriele Ciravegna (University of Florence)

Mar 4, 2020 – 11:00 AM
DIISM, Artificial Intelligence laboratory (room 201), Siena SI

Deep neural networks are usually considered black-boxes due to their complex internal architecture, that cannot straightforwardly provide human-understandable explanations on how they behave. Indeed, Deep Learning is still viewed with skepticism in those real-world domains in which incorrect predictions may produce critical effects. This is one of the reasons why in the last few years Explainable Artificial Intelligence (XAI) techniques have gained a lot of attention in the scientific community.
In this paper, we focus on the case of multi-label classification, proposing a neural network that learns the relationships among the predictors associated to each class, yielding First-Order Logic (FOL)-based descriptions. Both the explanation-related network and the classification-related network are jointly learned, thus implicitly introducing a latent dependency between the development of the explanation mechanism and the development of the classifiers. Our model can integrate human-driven preferences that guide the learning-to-explain process, and it is presented in a unified framework. Different typologies of explanations are evaluated in distinct experiments, showing that the proposed approach discovers new knowledge and can improve the classifier performance.

 |  Category: Seminars