Note
Click here to download the full example code
Net fileΒΆ
This is the Net file for the simple problem: state and output transition function definition
import tensorflow as tf
import numpy as np
def weight_variable(shape, nm):
# function to initialize weights
initial = tf.truncated_normal(shape, stddev=0.1)
tf.summary.histogram(nm, initial, collections=['always'])
return tf.Variable(initial, name=nm)
class Net:
# class to define state and output network
def __init__(self, input_dim, state_dim, output_dim):
# initialize weight and parameter
self.EPSILON = 0.00000001
self.input_dim = input_dim
self.state_dim = state_dim
self.output_dim = output_dim
self.state_input = self.input_dim - 1 + state_dim # removing the id_ dimension
#### TO BE SET ON A SPECIFIC PROBLEM
self.state_l1 = 15
self.state_l2 = self.state_dim
self.output_l1 = 10
self.output_l2 = self.output_dim
def netSt(self, inp):
with tf.variable_scope('State_net'):
layer1 = tf.layers.dense(inp, self.state_l1, activation=tf.nn.tanh)
layer2 = tf.layers.dense(layer1, self.state_l2, activation=tf.nn.tanh)
return layer2
def netOut(self, inp):
layer1 = tf.layers.dense(inp, self.output_l1, activation=tf.nn.tanh)
layer2 = tf.layers.dense(layer1, self.output_l2, activation=tf.nn.softmax)
return layer2
def Loss(self, output, target, output_weight=None):
# method to define the loss function
#lo = tf.losses.softmax_cross_entropy(target, output)
output = tf.maximum(output, self.EPSILON, name="Avoiding_explosions") # to avoid explosions
xent = -tf.reduce_sum(target * tf.log(output), 1)
lo = tf.reduce_mean(xent)
return lo
def Metric(self, target, output, output_weight=None):
# method to define the evaluation metric
correct_prediction = tf.equal(tf.argmax(output, 1), tf.argmax(target, 1))
metric = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return metric
Total running time of the script: ( 0 minutes 0.000 seconds)